-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_blender.py
337 lines (277 loc) · 12.7 KB
/
train_blender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import cv2
import torch
import numpy as np
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import torchvision
import lightning.pytorch as pl
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import ToTensor, ToPILImage
import wandb
from lightning.pytorch.loggers import WandbLogger
import argparse
from omegaconf import OmegaConf
from src.data import Voxceleb2H5Dataset
from src.data import CustomBatchSampler
from src.losses import PerceptualLoss, DiscriminatorLoss
from src.aligner import Discriminator
from src.utils.color_conversion import *
import src.utils.kornia_morphology
from src.data import BlenderDataset
from src.blender.generator import BlenderGenerator
from src.losses import ReferenceRegularizationLoss
class BlenderLoss(nn.Module):
def __init__(self, disc, w_perc_vgg=1e-2, w_rec=30, w_cycle=1, w_adv=1, w_reg=1):
super(BlenderLoss, self).__init__()
self.perc_vgg_loss = PerceptualLoss(1, './weights')
self.disc = disc
self.disc_loss = DiscriminatorLoss()
self.reg_loss = ReferenceRegularizationLoss()
self.weights = [w_perc_vgg, w_rec, w_cycle, w_adv, w_reg]
def forward(self, forward_batch, train_batch):
L_perc_vgg = self.perc_vgg_loss(forward_batch['fake'], train_batch['face_target'])
L_rec = F.l1_loss(forward_batch['fake'], train_batch['face_target'])
L_cycle = F.l1_loss(forward_batch['fake_pair'], forward_batch['label_pair'].detach()) + \
F.l1_loss(forward_batch['fake_nopair'], forward_batch['label_nopair'].detach())
disc_outputs = self.disc({
'fake_rgbs': torch.cat((forward_batch['fake'], forward_batch['M_Ah'], forward_batch['M_Ai']), dim=1),
'target_rgbs': torch.cat((train_batch['face_target'], forward_batch['M_Ah'], forward_batch['M_Ai']), dim=1)
})
L_disc_G_losses = self.disc_loss.forward_gen(disc_outputs)
_, L_adv_G = L_disc_G_losses['L_perc_disc'], L_disc_G_losses['L_adv_G']
L_adv_D = self.disc_loss.forward_disc(disc_outputs)
L_reg = self.reg_loss(forward_batch['gen_total'], forward_batch['I_gd'])
L_G = sum(
L * w for L, w
in zip((L_perc_vgg, L_rec, L_cycle, L_adv_G, L_reg), self.weights)
)
L_D = L_adv_D
return {
'L_perc_vgg': L_perc_vgg,
'L_rec': L_rec,
'L_cycle': L_cycle,
'L_adv_G': L_adv_G,
'L_adv_D': L_adv_D,
'L_G': L_G,
'L_D': L_D,
'L_reg': L_reg
}
class BlenderModule(pl.LightningModule):
def __init__(self, cfg):
super(BlenderModule, self).__init__()
self.gen = BlenderGenerator()
self.disc = Discriminator(in_channels=5)
self.blender_loss = BlenderLoss(
self.disc,
w_perc_vgg=cfg.train_options.weights.w_perc_vgg,
w_rec=cfg.train_options.weights.w_rec,
w_cycle=cfg.train_options.weights.w_cycle,
w_adv=cfg.train_options.weights.w_adv,
w_reg=cfg.train_options.weights.w_reg
)
self.g_lr = cfg.train_options.optim.g_lr
self.d_lr = cfg.train_options.optim.d_lr
self.g_clip = cfg.train_options.optim.g_clip
self.d_clip = cfg.train_options.optim.d_clip
self.betas = (cfg.train_options.optim.beta1, cfg.train_options.optim.beta2)
self.automatic_optimization = False
self.save_hyperparameters()
def forward(self, batch, old_version=False, copy_source_attrb=False, inpainter=None):
oup, gen_h, gen_i, M_Ah, I_tb, M_Ai, I_ag = self.gen(
batch['face_source'], batch['gray_source'], batch['face_target'],
batch['mask_source'], batch['mask_target'],
gt=batch['face_target'],
M_a_noise=batch['mask_source_noise'], M_t_noise=batch['mask_target_noise'],
cycle=False, train=False,
return_inputs=True,
old_version = old_version,
copy_source_attrb = copy_source_attrb,
inpainter=inpainter
)
return {
'oup': oup,
'gen_h': gen_h,
'gen_i': gen_i,
'M_Ah': M_Ah,
'I_tb': I_tb,
'M_Ai': M_Ai,
'I_ag': I_ag
}
def forward_train(self, batch):
fake, M_Ah, M_Ai, gen_total, I_gd = self.gen(
batch['face_source'], batch['gray_source'], batch['face_target'],
batch['mask_source'], batch['mask_target'],
gt=batch['face_target'],
M_a_noise=batch['mask_source_noise'], M_t_noise=batch['mask_target_noise'],
cycle=False, train=True, old_version=True
)
fake_pair, label_pair = self.gen(
batch['face_source'], batch['gray_source'], batch['face_target'],
batch['mask_source'], batch['mask_target'],
gt=None,
cycle=True, train=False, old_version=True
)
fake_nopair, label_nopair = self.gen(
batch['face_source'], batch['gray_source'], batch['face_side'],
batch['mask_source'], batch['mask_side'],
gt=None,
cycle=True, train=False, old_version=True
)
return {
'fake': fake,
'M_Ah': M_Ah,
'M_Ai': M_Ai,
'fake_pair': fake_pair,
'label_pair': label_pair,
'fake_nopair': fake_nopair,
'label_nopair': label_nopair,
'gen_total': gen_total,
'I_gd': I_gd
}
def configure_optimizers(self):
opt_G = torch.optim.Adam(self.gen.parameters(), lr=self.g_lr, betas=self.betas, eps=1e-5)
opt_D = torch.optim.Adam(self.disc.parameters(), lr=self.d_lr, betas=self.betas, eps=1e-5)
return opt_G, opt_D
def training_step(self, train_batch, batch_idx):
opt_G, opt_D = self.optimizers()
forward_dict = self.forward_train(train_batch)
losses = self.blender_loss(forward_dict, train_batch)
def closure_G():
opt_G.zero_grad()
self.manual_backward(losses['L_G'], retain_graph=True)
self.clip_gradients(opt_G, gradient_clip_val=self.g_clip)
return losses['L_G']
opt_G.step(closure=closure_G)
def closure_D():
opt_D.zero_grad()
self.manual_backward(losses['L_D'])
self.clip_gradients(opt_D, gradient_clip_val=self.d_clip)
return losses['L_D']
opt_D.step(closure=closure_D)
logs = dict((k, v.item()) for k, v in losses.items())
self.log_dict(logs)
return logs
def validation_step(self, val_batch, batch_idx, old_version=True, copy_source_attrb=False):
with torch.no_grad():
return dict(self.forward(val_batch, old_version=old_version, copy_source_attrb=copy_source_attrb), **val_batch)
class BlenderLogPredictionSamplesCallback(pl.Callback):
def __init__(self, wandb_logger, n=2):
super(BlenderLogPredictionSamplesCallback, self).__init__()
self.wandb_logger = wandb_logger
self.n = n
@staticmethod
def put_text(img, text):
return cv2.putText(np.ascontiguousarray(img), text, (64, 64), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
@staticmethod
def img_to_bgr(dict, key, i):
img = dict[key][i]
img_shape = list(img.shape)
img_shape[0] = 3
img = (img.expand(*img_shape).cpu().numpy().transpose((1, 2, 0)) / 2 + 0.5).astype(np.float32)
img = BlenderLogPredictionSamplesCallback.put_text(img, key)
return img
@staticmethod
def mask_to_bgr(dict, key, i, scale=18, cmap='viridis'):
mask = dict[key][i]
mask = plt.get_cmap(cmap)(mask[0].cpu().numpy() / scale)[:, :, [2, 1, 0]].astype(np.float32)
mask = BlenderLogPredictionSamplesCallback.put_text(mask, key)
return mask
@staticmethod
def create_template():
return np.full((512, 512, 3), 0, dtype=np.float32)
def create_grids(self, outputs):
"""
layout:
'face_orig' | 'face_source' | 'face_target' | 'gen_h' | 'M_Ah' | 'I_ag' | 'oup'
'mask_source' | 'gray_source' | 'mask_target' | 'gen_i' | 'M_Ai' | 'I_tb' | <black>
"""
samples = []
batch_size = outputs['face_orig'].shape[0]
for i in range(min(batch_size, self.n)):
sample = [
[
self.img_to_bgr(outputs, 'face_orig', i), self.img_to_bgr(outputs, 'face_source', i),
self.img_to_bgr(outputs, 'face_target', i), self.img_to_bgr(outputs, 'gen_h', i),
self.mask_to_bgr(outputs, 'M_Ah', i, scale=1., cmap='gray'), self.img_to_bgr(outputs, 'I_ag', i),
self.img_to_bgr(outputs, 'oup', i)
],
[
self.mask_to_bgr(outputs, 'mask_source', i), self.img_to_bgr(outputs, 'gray_source', i),
self.mask_to_bgr(outputs, 'mask_target', i), self.img_to_bgr(outputs, 'gen_i', i),
self.mask_to_bgr(outputs, 'M_Ai', i, scale=1., cmap='gray'), self.img_to_bgr(outputs, 'I_tb', i),
self.create_template()
]
]
sample = np.concatenate([np.concatenate(row, axis=1) for row in sample], axis=0)
samples.append(sample)
sample_shape = samples[0].shape
border = np.full((16, sample_shape[1], 3), 1).astype(np.float32)
samples_with_borders = []
for i, sample in enumerate(samples):
samples_with_borders.append(sample)
if i != len(samples) - 1:
samples_with_borders.append(border)
samples_with_borders = np.concatenate(samples_with_borders, axis=0)
samples_rgb = np.clip(np.nan_to_num(samples_with_borders[:, :, ::-1]), 0, 1)
return samples_rgb
def on_validation_batch_end(
self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=0):
"""Called when the validation batch ends."""
if batch_idx == 0:
samples_rgb = self.create_grids(outputs)
wandb_logger.log_image(key="samples", images=[samples_rgb], step=trainer.global_step)
def create_dataset(cfg, source_transform=None):
train_dataset = BlenderDataset(
cfg.data_path,
source_transform=source_transform,
shuffle=cfg.shuffle,
flip_target=cfg.flip_target,
affine_source=cfg.affine_source,
make_noise=cfg.make_noise,
subset_size=cfg.subset_size
)
sampler = CustomBatchSampler(train_dataset)
dataloader = DataLoader(train_dataset, batch_size=cfg.batch_size, sampler=sampler, num_workers=cfg.num_workers)
return dataloader
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/blender.yaml")
args = parser.parse_args()
with open(args.config, "r") as stream:
cfg = OmegaConf.load(stream)
model = BlenderModule(
cfg
)
source_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.ColorJitter(
*([cfg.train_options.jitter_value] * 4)
),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataloader = create_dataset(cfg.train_options, source_transform=source_transform)
val_dataloader = create_dataset(cfg.inference_options)
wandb_logger = WandbLogger(project='Blender', name=cfg.experiment_name, reinit=True, settings=wandb.Settings(code_dir="."))
if wandb.run is not None:
wandb.run.log_code('.')
wandb_logger.watch(model, log_freq=cfg.train_options.wandb_log_freq)
log_pred_callback = BlenderLogPredictionSamplesCallback(wandb_logger)
trainer = pl.Trainer(
max_epochs=cfg.train_options.max_epochs,
accelerator='gpu', devices=cfg.num_gpus,
log_every_n_steps=cfg.train_options.log_train_freq,
val_check_interval=cfg.train_options.log_interval,
logger=wandb_logger, callbacks=[
log_pred_callback, pl.callbacks.ModelCheckpoint(
save_last=cfg.train_options.save_last,
every_n_epochs=cfg.train_options.save_every_n_epochs,
save_top_k=cfg.train_options.save_top_k
)
],
precision=16,
strategy='ddp_find_unused_parameters_true',
)
torch.set_float32_matmul_precision('medium')
trainer.fit(model, train_dataloader, val_dataloader)
wandb_logger.experiment.unwatch(model)