diff --git a/Submission/Project Report.pdf b/Submission/Project Report.pdf new file mode 100644 index 000000000..b798f22cc Binary files /dev/null and b/Submission/Project Report.pdf differ diff --git a/krishnamathur00@gmail.com/Project/krishna submission b/krishnamathur00@gmail.com/Project/krishna submission new file mode 100644 index 000000000..e69de29bb diff --git a/krishnamathur00@gmail.com/Project/krishna submission:Comparing performance of three different clustering algorithms on IRIS Dataset b/krishnamathur00@gmail.com/Project/krishna submission:Comparing performance of three different clustering algorithms on IRIS Dataset deleted file mode 100644 index 8b1378917..000000000 --- a/krishnamathur00@gmail.com/Project/krishna submission:Comparing performance of three different clustering algorithms on IRIS Dataset +++ /dev/null @@ -1 +0,0 @@ - diff --git a/meghat525@gmail.com/Submission/Fruits360.py b/meghat525@gmail.com/Submission/Fruits360.py new file mode 100644 index 000000000..582c6140e --- /dev/null +++ b/meghat525@gmail.com/Submission/Fruits360.py @@ -0,0 +1,51 @@ +#CNN +#Part 1-Building the CNN +from keras.models import Sequential +from keras.layers import Conv2D +from keras.layers import MaxPooling2D +from keras.layers import Flatten +from keras.layers import Dense +#Initialising the CNN +classifier=Sequential() +#Step 1-Convolution +classifier.add(Conv2D(32,(3,3),input_shape=(64,64,3),activation="relu")) +#Step 2- Max Pooling +classifier.add(MaxPooling2D(pool_size=(2,2))) +#Adding second convolutional layer +classifier.add(Conv2D(32,(3,3),activation="relu")) +classifier.add(MaxPooling2D(pool_size=(2,2))) +#Step 3-Flattening +classifier.add(Flatten()) +#Step 4-Full Connection +classifier.add(Dense(activation="relu",units=128)) +classifier.add(Dense(activation="softmax",units=114)) +#Compiling the ANN +classifier.compile(optimizer="adam",loss="categorical_crossentropy",metrics=["accuracy"]) +#Fitting the dataset +from keras.preprocessing.image import ImageDataGenerator +train_datagen = ImageDataGenerator( + rescale=1./255, + shear_range=0.2, + zoom_range=0.2, + horizontal_flip=True) + +test_datagen = ImageDataGenerator(rescale=1./255) + +training_set = train_datagen.flow_from_directory( + 'Training', #Directory + target_size=(64, 64), #Same as that in input_shape + batch_size=32, + class_mode='categorical') + +test_set = test_datagen.flow_from_directory( + 'Test', + target_size=(64, 64), + batch_size=50, + class_mode='categorical') + +classifier.fit_generator( + training_set, + steps_per_epoch=57276, #No. of images in training set + epochs=7, #No. of epochs + validation_data=test_set, + validation_steps=19548) #No. of images in test set \ No newline at end of file diff --git a/meghat525@gmail.com/Submission/Project Report.pdf b/meghat525@gmail.com/Submission/Project Report.pdf new file mode 100644 index 000000000..b798f22cc Binary files /dev/null and b/meghat525@gmail.com/Submission/Project Report.pdf differ diff --git a/sainitushar18899@gmail.com/Project/Tushar submission b/sainitushar18899@gmail.com/Project/Tushar submission new file mode 100644 index 000000000..e69de29bb diff --git a/sainitushar18899@gmail.com/Project/Tushar submission: Comparing SVM with 3 layer Neural Network on Titanic Dataset b/sainitushar18899@gmail.com/Project/Tushar submission: Comparing SVM with 3 layer Neural Network on Titanic Dataset deleted file mode 100644 index ea87e0afd..000000000 --- a/sainitushar18899@gmail.com/Project/Tushar submission: Comparing SVM with 3 layer Neural Network on Titanic Dataset +++ /dev/null @@ -1 +0,0 @@ -Tushar submission: Comparing SVM with 3 layer Neural Network on Titanic Dataset