-
Notifications
You must be signed in to change notification settings - Fork 4
/
predict_simple.py
48 lines (34 loc) · 1.85 KB
/
predict_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import shutil
from PIL import Image
from utils.embedder import AestheticRegressor
from tqdm import tqdm
import argparse
import torch
def predict_images(img_paths, model_path, device, output_dir = None):
# Load the scoring model (only do this once in a python session):
aesthetic_regressor = AestheticRegressor(model_path, device = device)
if output_dir is not None:
os.makedirs(output_dir, exist_ok = True)
print("\nPredicting aesthetic scores...")
for image_path in tqdm(img_paths):
score, embedding = aesthetic_regressor.predict_score(Image.open(image_path))
print(f"Score: {score:.3f} for {os.path.basename(image_path)}")
if output_dir is not None:
output_path = os.path.join(output_dir, f'{score:.3f}_' + os.path.basename(image_path))
shutil.copy(image_path, output_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# IO args:
parser.add_argument('--input_img_dir', type=str, help='Root directory of the (optionally multiple) datasets')
parser.add_argument('--model_path', type=str, default='models/single_crop_regression_9.4k_imgs_80_epochs.pth', help='Path to the model file (.pth)')
args = parser.parse_args()
input_img_dir = args.input_img_dir
#output_dir = None # dont copy the scored images
output_dir = input_img_dir + "_aesthetic_scores" # copy the scored images
# Get all the img_paths:
img_extensions = [".jpg", ".png", ".jpeg", ".bmp", ".webp"]
list_of_img_paths = [os.path.join(input_img_dir, img_name) for img_name in os.listdir(input_img_dir) if os.path.splitext(img_name)[1].lower() in img_extensions]
print(f"Found {len(list_of_img_paths)} images in {input_img_dir}")
device = "cuda" if torch.cuda.is_available() else "cpu"
predict_images(list_of_img_paths, args.model_path, device, output_dir)