-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathget_args.py
165 lines (140 loc) · 5.82 KB
/
get_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from colorama import Fore, Style
import os
from model_list import models, model_subset
DEFAULT_THRESHOLDS = {
'coherence_score': 15,
'embedding_dissimilarity_score': 0.15,
'llm_dissimilarity_score': 0.15
}
SECTION_COLOR = Fore.MAGENTA + Style.BRIGHT
PROMPT_COLOR = Fore.CYAN
ERROR_COLOR = Fore.RED + Style.BRIGHT
def _clear_screen():
os.system('clear' if os.name != 'nt' else 'cls')
def get_user_choices() -> dict[str, any]:
choices = {}
_clear_screen()
print(f"\n{SECTION_COLOR}=== LLM Benchmark Configuration ==={Style.RESET_ALL}\n")
choices['model_names'] = _get_model_selection()
_clear_screen()
choices['thresholds'] = _get_threshold_configuration()
_clear_screen()
choices['temperatures'] = _get_temperature_configuration()
_clear_screen()
print(f"{SECTION_COLOR}=== Additional Configuration ==={Style.RESET_ALL}\n")
choices['chain_of_thought'] = _get_yes_no(f"{PROMPT_COLOR}Use chain of thought?{Style.RESET_ALL}")
choices['use_llm'] = _get_yes_no(f"{PROMPT_COLOR}Use LLM similarity scoring?{Style.RESET_ALL}")
choices['multithreaded'] = _get_yes_no(f"{PROMPT_COLOR}Enable multithreading?{Style.RESET_ALL}")
choices['num_questions'] = _get_num_questions()
choices['results_file'] = _get_results_file()
return choices
def _get_model_selection() -> list[str]:
"""Handle model selection logic."""
print("Select models to benchmark:")
print("1. Single model")
print("2. Model subset")
print("3. All models")
while True:
model_choice = input("\nEnter choice (1-3): ").strip()
if model_choice in {'1', '2', '3'}:
break
print(f"{ERROR_COLOR}Invalid choice. Please enter 1, 2, or 3.{Style.RESET_ALL}")
if model_choice == '1':
print("\nAvailable models:")
for idx, model in enumerate(models, 1):
print(f"{idx}. {model}")
while True:
try:
model_idx = int(input("\nEnter model number: ").strip()) - 1
if 0 <= model_idx < len(models):
return [models[model_idx]]
except ValueError:
pass
print(f"{ERROR_COLOR}Invalid choice. Please enter a number between 1 and {len(models)}.{Style.RESET_ALL}")
elif model_choice == '2':
return model_subset
return models
def _get_threshold_configuration() -> dict:
"""Handle threshold configuration."""
print(f"\n{SECTION_COLOR}Skip Thresholds Configuration{Style.RESET_ALL}")
print("Current defaults:")
for key, value in DEFAULT_THRESHOLDS.items():
print(f"- {key}: {value}")
if not _get_yes_no("\nModify thresholds?"):
return DEFAULT_THRESHOLDS.copy()
thresholds = {}
print("\nEnter new values (press Enter to keep default):")
thresholds['coherence_score'] = _get_float_or_default(
"Coherence score threshold (lower is better)",
DEFAULT_THRESHOLDS['coherence_score'],
0, 100
)
thresholds['embedding_dissimilarity_score'] = _get_float_or_default(
"Embedding dissimilarity threshold (lower is better)",
DEFAULT_THRESHOLDS['embedding_dissimilarity_score'],
0, 1
)
thresholds['llm_dissimilarity_score'] = _get_float_or_default(
"LLM dissimilarity threshold (lower is better)",
DEFAULT_THRESHOLDS['llm_dissimilarity_score'],
0, 1
)
return thresholds
def _get_temperature_configuration() -> list[float]:
"""Handle temperature configuration."""
print("\nTemperature configuration:")
print("1. Single temperature")
print("2. Full range (0.0 - 1.0)")
while True:
temp_choice = input("\nEnter choice (1-2): ").strip()
if temp_choice in {'1', '2'}:
break
print(f"{ERROR_COLOR}Invalid choice. Please enter 1 or 2.{Style.RESET_ALL}")
if temp_choice == '1':
while True:
try:
temp = float(input("\nEnter temperature (0.0 - 1.0): ").strip())
if 0 <= temp <= 1:
return [temp]
except ValueError:
pass
print(f"{ERROR_COLOR}Invalid temperature. Please enter a number between 0.0 and 1.0.{Style.RESET_ALL}")
return [round(t * 0.2, 1) for t in range(6)]
def _get_num_questions() -> int | None:
"""Get number of questions to process."""
while True:
num_q = input("\nNumber of questions (press Enter for all): ").strip()
if not num_q:
return None
try:
num = int(num_q)
if num > 0:
return num
except ValueError:
pass
print(f"{ERROR_COLOR}Invalid number. Please enter a positive integer or press Enter.{Style.RESET_ALL}")
def _get_results_file() -> str:
"""Get results file path."""
return input("\nResults file path (press Enter for 'results.json'): ").strip() or 'results.json'
def _get_float_or_default(prompt: str, default: float, min_val: float, max_val: float) -> float:
"""Get float input with validation and default value."""
while True:
response = input(f"{prompt} (default={default}): ").strip()
if not response:
return default
try:
value = float(response)
if min_val <= value <= max_val:
return value
print(f"{ERROR_COLOR}Value must be between {min_val} and {max_val}.{Style.RESET_ALL}")
except ValueError:
print(f"{ERROR_COLOR}Please enter a valid number.{Style.RESET_ALL}")
def _get_yes_no(prompt: str) -> bool:
"""Get yes/no input with validation."""
while True:
response = input(f"{prompt} (y/n): ").strip().lower()
if response in {'y', 'yes'}:
return True
if response in {'n', 'no'}:
return False
print(f"{ERROR_COLOR}Please enter 'y' or 'n'.{Style.RESET_ALL}")