-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_cifar_prune.py
211 lines (183 loc) · 9.64 KB
/
resnet_cifar_prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
from torchvision import datasets, transforms, models
from torchvision.models import ResNet34_Weights, ResNet18_Weights
import os
import load_model
import pruning
from torch.utils.data import DataLoader
import os
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from IPython import embed
from collections import OrderedDict
import time
import torch.nn.functional as F
import torch.optim as optim
import torch.nn.utils.prune as prune
import copy
import resnet_model
import layers
device = torch.device(f"cuda:0") if torch.cuda.is_available() else 'cpu'
print(device)
def get10(batch_size, data_root='/tmp/public_dataset/pytorch', train=True, val=True, **kwargs):
data_root = os.path.expanduser(os.path.join(data_root, 'cifar10-data'))
num_workers = kwargs.setdefault('num_workers', 1)
kwargs.pop('input_size', None)
print("Building CIFAR-10 data loader with {} workers".format(num_workers))
ds = []
if train:
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(
root=data_root, train=True, download=True,
transform=transforms.Compose([
transforms.Pad(4),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])),
batch_size=batch_size, shuffle=True, **kwargs)
ds.append(train_loader)
if val:
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(
root=data_root, train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])),
batch_size=batch_size, shuffle=False, **kwargs)
ds.append(test_loader)
ds = ds[0] if len(ds) == 1 else ds
return ds
class VocModel(nn.Module):
def __init__(self, num_classes=10, weights=None, mask=False, lottery=False, attribute_preserve=False, hydra=False):
super().__init__()
# Use a pretrained model
self.network = resnet_model.resnet18(weights=weights, mask=mask, lottery=lottery, attribute_preserve=attribute_preserve, hydra=hydra)
# Replace last layer
self.network.fc = layers.SubnetLinear(self.network.fc.in_features, num_classes) if hydra else nn.Linear(self.network.fc.in_features, num_classes)
def forward(self, xb):
return self.network(xb)
log_interval = 10
test_interval = 5
def train(model, epochs=150, lr=0.001, decreasing_lr='80,120', wd=0, save='vanilla_pruning', training=False):
best_acc = 0
model.train()
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=wd)
decreasing_lr = list(map(int, decreasing_lr.split(',')))
t_begin = time.time()
for epoch in range(epochs):
model.train()
if epoch in decreasing_lr:
optimizer.param_groups[0]['lr'] *= 0.1
for batch_idx, (data, target) in enumerate(train_loader):
indx_target = target.clone()
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % log_interval == 0 and batch_idx > 0:
pred = output.data.max(1)[1] # get the index of the max log-probability
correct = pred.cpu().eq(indx_target).sum()
acc = correct * 1.0 / len(data)
print('Train Epoch: {} [{}/{}] Loss: {:.6f} Acc: {:.4f} lr: {:.2e}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
loss.data.item(), acc, optimizer.param_groups[0]['lr']))
elapse_time = time.time() - t_begin
speed_epoch = elapse_time / (epoch + 1)
speed_batch = speed_epoch / len(train_loader)
eta = speed_epoch * epochs - elapse_time
print("Elapsed {:.2f}s, {:.2f} s/epoch, {:.2f} s/batch, ets {:.2f}s".format(
elapse_time, speed_epoch, speed_batch, eta))
# misc.model_snapshot(model, os.path.join(args.logdir, 'latest.pth'))
if epoch % test_interval == 0:
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
indx_target = target.clone()
# if use_cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
test_loss += F.cross_entropy(output, target).data.item()
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.cpu().eq(indx_target).sum()
test_loss = test_loss / len(test_loader) # average over number of mini-batch
acc = 100. * correct / len(test_loader.dataset)
print('\tTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset), acc))
if acc > best_acc:
# new_file = os.path.join(args.logdir, 'best-{}.pth'.format(epoch))
# misc.model_snapshot(model, new_file, old_file=old_file, verbose=True)
best_acc = acc
# model_copy = model.clone()
# for name, module in model_copy.named_modules():
# if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
# prune.remove(module, 'weight')
if training:
# for name, module in model.named_modules():
# if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
# prune.remove(module, 'weight')
torch.save(model.state_dict(), './saved_models/{}_best.pt'.format(save))
# old_file = new_file
if not training:
for name, module in model.named_modules():
if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
prune.remove(module, 'weight')
torch.save(model.state_dict(), './saved_models/{}_final.pt')
print("Total Elapse: {:.2f}, Best Result: {:.3f}%".format(time.time()-t_begin, best_acc))
def evaluate(model):
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
indx_target = target.clone()
# if use_cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
test_loss += F.cross_entropy(output, target).data.item()
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.cpu().eq(indx_target).sum()
test_loss = test_loss / len(test_loader) # average over number of mini-batch
acc = 100. * correct / len(test_loader.dataset)
print('\tTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset), acc))
train_loader, test_loader = get10(batch_size=200, num_workers=4)
# pretrain_model = load_model.get_GraSP_VGG('./saved_models/pretrain_best_lottery.pt')
# pruning.vanilla_prune(pretrain_model, 0.9, 0.9)
# train(pretrain_model, epochs=10, lr=0.00001, save='vanilla_pruning_one_shot')
# for name, module in pretrain_model.named_modules():
# if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
# prune.remove(module, 'weight')
# torch.save(pretrain_model.state_dict(), './saved_models/vanilla_pruning_one_shot.pt')
model = VocModel(num_classes=10, weights=ResNet18_Weights.DEFAULT).to(device)
# model.load_state_dict(torch.load('./saved_models/resnet18_cifar10_model_best.pt'))
train(model, epochs=50, lr=0.0001, save='resnet18_cifar10_model', training=True)
# pretrain_model = load_model.get_GraSP_VGG('./saved_models/pretrain_best_lottery.pt')
pruning.vanilla_prune(model, 0.16, 0.16)
train(model, epochs=15, lr=0.00001, save='resnet18_cifar_prune_iterative_16')
pruning.vanilla_prune(model, 0.16*2, 0.16*2)
train(model, epochs=15, lr=0.00001, save='resnet18_cifar_prune_iterative_32')
pruning.vanilla_prune(model, 0.16*3, 0.16*3)
train(model, epochs=15, lr=0.00001, save='resnet18_cifar_prune_iterative_48')
pruning.vanilla_prune(model, 0.16*4, 0.16*4)
train(model, epochs=15, lr=0.00001, save='resnet18_cifar_prune_iterative_64')
pruning.vanilla_prune(model, 0.16*5, 0.16*5)
train(model, epochs=15, lr=0.00001, save='resnet18_cifar_prune_iterative_80')
model.load_state_dict(torch.load('./saved_models/resnet18_cifar10_model_best.pt'))
pruning.vanilla_prune(model, 0.16*5, 0.18*5)
train(model, epochs=20, lr=0.00001, save='resnet18_cifar_prune_one_shot_80')
# for name, module in model.named_modules():
# if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
# prune.remove(module, 'weight')
# torch.save(model.state_dict(), './saved_models/resnet_cifar_prune_iterative.pt')
# pretrain_model = load_model.get_GraSP_VGG('./saved_models/pretrain_best_lottery.pt')
# pruning.vanilla_prune(pretrain_model, 0.2, 0.2)
# train(pretrain_model, epochs=5, lr=0.00001, save='vanilla_pruning_0.2')
# for name, module in pretrain_model.named_modules():
# if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
# prune.remove(module, 'weight')
# torch.save(pretrain_model.state_dict(), './saved_models/vanilla_pruning_0.2.pt')