forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
load_derivatives.py
1002 lines (892 loc) · 39.1 KB
/
load_derivatives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Parses derivatives.yaml into autograd functions
#
# Each autograd function is represented by `DifferentiabilityInfo` containing
# a list of `Derivative`. See `torchgen.api.autograd` for the data models.
import re
from collections import defaultdict
from typing import Any, Counter, Dict, List, Match, Optional, Sequence, Set, Tuple
import yaml
from torchgen.api import cpp
from torchgen.api.autograd import (
Derivative,
DifferentiabilityInfo,
ForwardDerivative,
SavedAttribute,
)
from torchgen.api.types import (
BaseCType,
Binding,
boolT,
CppSignatureGroup,
layoutT,
longT,
NamedCType,
OptionalCType,
scalarTypeT,
SpecialArgName,
stringT,
symIntArrayRefT,
SymIntT,
tensorGeometryT,
tensorOptionsT,
typeAndSizeT,
VectorCType,
)
from torchgen.context import with_native_function
from torchgen.gen import get_grouped_by_view_native_functions, parse_native_yaml
from torchgen.model import (
AUTOGRAD_KEYS,
FunctionSchema,
NativeFunction,
NativeFunctionsViewGroup,
OperatorName,
SchemaKind,
Type,
Variant,
)
from torchgen.utils import concatMap, IDENT_REGEX, split_name_params, YamlLoader
_GLOBAL_LOAD_DERIVATIVE_CACHE = {}
_VALID_AUTOGRAD_KEYS = set(AUTOGRAD_KEYS)
# This function directly adds per-dispatchkey derivative entries for {view}_copy variants of each view op.
# Since every {view} and {view}_copy op shares the same derivative formula,
# we generate them here instead of duplicating them in the yaml.
# See Note [Codegen'd {view}_copy Operators]
def add_view_copy_derivatives(
infos: Dict[FunctionSchema, Dict[str, DifferentiabilityInfo]],
view_groups: List[NativeFunctionsViewGroup],
) -> None:
# Get the map from each view op's name to its corresponding view group
view_name_to_group: Dict[OperatorName, NativeFunctionsViewGroup] = {
g.view.func.name: g for g in view_groups
}
view_infos = {}
for _, info_dispatch_dict in infos.items():
# maybe_view_group only needs to be calculated once per info_dispatch_dict
maybe_view_group = None
view_copy_differentiability_infos = {}
for dispatch_key, info in info_dispatch_dict.items():
maybe_view_group = view_name_to_group.get(info.func.func.name, None)
if maybe_view_group is not None and maybe_view_group.view_copy is not None:
view_copy_info = info.create_view_copy_from_view_derivative(
maybe_view_group
)
if view_copy_info is not None:
fn_schema = view_copy_info.func.func
view_copy_differentiability_infos[dispatch_key] = view_copy_info
else:
break
if len(view_copy_differentiability_infos) > 0:
assert fn_schema is not None
view_infos[fn_schema] = view_copy_differentiability_infos
infos.update(view_infos)
def load_derivatives(
derivatives_yaml_path: str, native_yaml_path: str, tags_yaml_path: str
) -> Tuple[Dict[FunctionSchema, Dict[str, DifferentiabilityInfo]], Set[str]]:
# Do some caching as this is a deterministic function
global _GLOBAL_LOAD_DERIVATIVE_CACHE
key = (derivatives_yaml_path, native_yaml_path)
if key not in _GLOBAL_LOAD_DERIVATIVE_CACHE:
with open(derivatives_yaml_path, "r") as f:
definitions = yaml.load(f, Loader=YamlLoader)
funcs = parse_native_yaml(native_yaml_path, tags_yaml_path).native_functions
# From the parsed native functions, separate out the (generated) view_copy functions,
# so we can generate derivatives for them separately.
native_functions_with_view_groups = get_grouped_by_view_native_functions(funcs)
native_functions_without_view_copies = concatMap(
# We need to pull out the view_inplace ops too, since they might have their own derivative entries.
lambda g: [g]
if isinstance(g, NativeFunction)
else list(g.functions(include_copy=False)),
native_functions_with_view_groups,
)
view_groups = [
g
for g in native_functions_with_view_groups
if isinstance(g, NativeFunctionsViewGroup)
]
# What's the difference between function schema v.s. signature?
# function schema is the complete declaration including mutability annotation / default value and etc.
# signature is the canonical schema for a group of functions (in-place/out/functional variants)
# that are semantically related.
functions_by_signature: Dict[
FunctionSchema, List[NativeFunction]
] = defaultdict(list)
functions_by_schema: Dict[str, NativeFunction] = {}
for function in native_functions_without_view_copies:
functions_by_signature[function.func.signature()].append(function)
assert str(function.func) not in functions_by_schema
functions_by_schema[str(function.func)] = function
# Keep track of how many of which ops we've seen so we can
# disambiguate them with a numeric suffix.
op_counter = Counter[str]()
# infos is a dict that maps FunctionSchema -> a dict of per dispatch key DifferentiabilityInfos
# this is useful because in tools/autograd/gen_autograd.py:match_differentiability_info
# we ultimately need to categorize the DifferentiabilityInfos by FunctionSchema
infos: Dict[FunctionSchema, Dict[str, DifferentiabilityInfo]] = {}
used_dispatch_keys: Set[str] = set()
for defn_dict in definitions:
# Ensure that the old derivatives.yaml schema with no dispatch key can be loaded.
if "dispatch" not in defn_dict:
specification = defn_dict.pop("name")
output_differentiability = defn_dict.pop(
"output_differentiability", None
)
defn_dict = {"name": specification, "dispatch": {"Default": defn_dict}}
if output_differentiability:
defn_dict["output_differentiability"] = output_differentiability
name, per_dispatch_diffinfos = create_differentiability_info(
defn_dict,
functions_by_signature,
functions_by_schema,
op_counter,
used_dispatch_keys,
)
infos[name] = per_dispatch_diffinfos
add_view_copy_derivatives(infos, view_groups)
# cache both loaded infos as well a a set of all the dispatch_keys/aliases
# that appear in derivatives.yaml. used_dispatch_keys is useful for generating
# VariableType.cpp where we need a TORCH_LIBRARY_IMPL for every autograd dispatch key used
_GLOBAL_LOAD_DERIVATIVE_CACHE[key] = infos, used_dispatch_keys
return _GLOBAL_LOAD_DERIVATIVE_CACHE[key]
# TODO: Why is this going through CppSignatureGroup, that doesn't make sense...
@with_native_function
def cpp_arguments(f: NativeFunction) -> Sequence[Binding]:
sigs = CppSignatureGroup.from_native_function(f, method=False)
if sigs.symint_signature is not None:
return sigs.symint_signature.arguments()
else:
return sigs.signature.arguments()
def create_derivative(
f: NativeFunction,
formula: str,
var_names: Tuple[str, ...],
available_named_gradients: Sequence[str],
) -> Derivative:
original_formula = formula
arguments: List[NamedCType] = [
a.nctype.remove_const_ref() for a in cpp_arguments(f)
]
return_names = tuple(n if n != "self" else "result" for n in cpp.return_names(f))
return_types = tuple(
cpp.return_type(r, symint=True).remove_const_ref() for r in f.func.returns
)
named_returns = [
NamedCType(name, type) for name, type in zip(return_names, return_types)
]
formula, saved_inputs = saved_variables(formula, arguments, var_names)
formula, saved_outputs = saved_variables(formula, named_returns, var_names)
used_named_gradients = {
name
for name in available_named_gradients
if re.search(IDENT_REGEX.format(name), formula)
}
# Check that the referenced derivatives in the formula are in bounds
for i in used_gradient_indices(formula):
if i >= len(f.func.returns):
raise RuntimeError(
f"Out of bounds grads access: derivative formula for {cpp.name(f.func)} "
f"used grads[{i}], but the forward only returns {len(f.func.returns)} outputs."
)
return Derivative(
formula=formula,
original_formula=original_formula,
var_names=var_names,
saved_inputs=saved_inputs,
saved_outputs=saved_outputs,
named_gradients=used_named_gradients,
)
def create_forward_derivative(
f: NativeFunction, formula: str, names: Tuple[str, ...]
) -> ForwardDerivative:
var_names = names
var_types: Optional[Tuple[Type, ...]] = None
for r in f.func.returns:
if r.name in var_names:
if var_types is None:
var_types = tuple()
var_types = var_types + (r.type,)
# Handle default return names
if var_types is None:
if var_names == ("result",):
assert len(f.func.returns) == 1
var_types = (f.func.returns[0].type,)
else:
for var_name in var_names:
res = re.findall(r"^result(\d+)$", var_name)
if len(res) == 1:
if var_types is None:
var_types = tuple()
arg_idx = int(res[0])
var_types = var_types + (f.func.returns[arg_idx].type,)
assert var_types is not None, "No matching output for forward derivative definition"
return ForwardDerivative(
formula=formula,
var_names=var_names,
var_types=var_types,
required_inputs_fw_grad=None,
required_inputs_primal=None,
required_original_self_value=False,
is_reusing_outplace_formula=False,
)
def postprocess_forward_derivatives(
f: NativeFunction,
defn_name: str,
all_arg_names: List[str],
derivatives: List[Derivative],
forward_derivatives: List[ForwardDerivative],
args_with_derivatives: Sequence[Binding],
) -> List[ForwardDerivative]:
def find_required_inputs(formula: str, postfix: str) -> Tuple[str, ...]:
required_inputs = set()
for arg in args_with_derivatives:
if arg.type in ("at::TensorList", "const at::ITensorListRef &"):
# The functions taking TensorList handle everything internally
continue
arg_name = arg.name
found = re.search(IDENT_REGEX.format(arg_name), formula)
if found:
raise RuntimeError(
f"The forward formula for {defn_name} is using the base name of the {arg_name} "
f"argument which is ambiguous. You should use {arg_name}_p to access the primal "
f"value and {arg_name}_t to access the tangent."
)
found = re.search(IDENT_REGEX.format(arg_name + postfix), formula)
if found:
required_inputs.add(arg_name)
return tuple(required_inputs)
updated_derivatives: List[ForwardDerivative] = []
for defn in forward_derivatives:
formula = defn.formula
required_inputs_tangent = find_required_inputs(formula, "_t")
if formula == "auto_element_wise":
assert (
f.func.kind() != SchemaKind.inplace
), f"Cannot use auto_element_wise with {f.func.name} because it is an in-place variant"
if (
(not len(args_with_derivatives) == 1)
or len(forward_derivatives) > 1
or len(forward_derivatives[0].var_names) > 1
):
raise RuntimeError(
f"Derivative definition of {defn_name} in derivatives.yaml defines the "
"forward definition of gradient as element_wise but this only "
"works for functions with a single differentiable input and a "
"single differentiable output."
)
if not len(derivatives) == 1:
raise RuntimeError(
f"Derivative definition of {defn_name} in derivatives.yaml defines the "
"forward definition of gradient as element_wise but it does not "
"defines the gradient formula for its argument which is required."
)
# This transformation is based on the observation that for element-wise functions, the Jacobian
# matrix is diagonal and thus doing J * v is the same as (v^T J)^T (in practice, we ignore the transpositions)
# For the complex case, we use hermitian transpose and get (v.conj() J).conj()
# So here we are going to re-use the backward formula and replace two things:
# 1) all occurrences of "grad" with "foo_t.conj()", where foo is the name of the unique differentiable input.
# 2) all usage of an original input "foo" with its primal value "foo_p".
# 3) conjugate the final result
# For example, for abs, the backward formula is:
# grad * self.sgn()
# And this function generates a forward formula that is:
# (self_t.conj() * self_p.sgn()).conj()
backward_formula = derivatives[0].original_formula
input_name = args_with_derivatives[0].name
# Do replacement 1) of the grad
def repl(m: Any) -> str:
return f"{m.group(1)}{input_name}_t.conj(){m.group(2)}"
fw_formula = re.sub(IDENT_REGEX.format("grad"), repl, backward_formula)
# Do replacement 2) of the input variables
for arg in args_with_derivatives:
arg_name = arg.name
def repl(m: Any) -> str:
return f"{m.group(1)}{arg_name}_p{m.group(2)}"
fw_formula = re.sub(IDENT_REGEX.format(arg_name), repl, fw_formula)
# Do the final conjugate 3)
fw_formula = f"({fw_formula}).conj()"
# Since there is a single differentiable inputs and we necessarily need its tangent we can
# simply require all differentiable input's tangent.
required_inputs_tangent = tuple(all_arg_names)
formula = fw_formula
elif formula == "auto_linear":
if (
len(forward_derivatives) > 1
or len(forward_derivatives[0].var_names) > 1
):
raise RuntimeError(
f"Derivative definition of {defn_name} in derivatives.yaml defines the "
"forward definition of gradient as linear but this only works "
"for functions with a single differentiable output."
)
# This transformation is based on the observation that linear functions can be written as:
# y = f(x) = A * x
# For some matrix A and the Jacobian of the function f is also A.
# So doing J * v = A * v = f(v).
# Hence to do the jvp, we simply need to evaluate the function at the point v instead of x.
# We do this by calling the forward again by replacing any occurrence of the differentiable
# input "foo" by it's tangent "foo_t".
# Note that multiple inputs are not a problem as long as the function is truly linear wrt to
# the vector where all the differentiable inputs are stacked.
diff_arg_names = [arg.name for arg in args_with_derivatives]
assert len(diff_arg_names) > 0
# Do replacement of input variables
new_args = []
for arg_name in all_arg_names:
if arg_name in diff_arg_names:
arg_name = arg_name + "_t"
new_args.append(arg_name)
# TODO we are trolling
if f.func.has_symint():
defn_name += "_symint"
# Call into the forward again. We need two cases here to handle both Tensor methods and at:: functions.
if Variant.function in f.variants:
fw_formula = "at::{}({})".format(defn_name, ", ".join(new_args))
else:
assert Variant.method in f.variants
fw_formula = "{}.{}({})".format(
new_args[0], defn_name, ", ".join(new_args[1:])
)
# All of the input tangents are always used so all of them are required here.
required_inputs_tangent = tuple(diff_arg_names)
formula = fw_formula
# At this point, the formula is final and is not modified anymore.
# During forward formula, we use the primal instead of the input Tensors.
# This call inspects the formula to find for which input's primal are used.
required_inputs_primal = find_required_inputs(formula, "_p")
updated_derivatives.append(
ForwardDerivative(
formula=formula,
var_names=defn.var_names,
var_types=defn.var_types,
required_inputs_fw_grad=required_inputs_tangent,
required_inputs_primal=required_inputs_primal,
required_original_self_value=False,
is_reusing_outplace_formula=False,
)
)
return updated_derivatives
def is_forward_derivative_definition(
all_arg_names: List[str], names: Tuple[str, ...]
) -> bool:
for name in names:
if name not in all_arg_names:
return True
else:
return False
raise RuntimeError("Expected `names` to be non-empty")
def create_differentiability_info(
defn_dict: Dict[Any, Any],
functions_by_signature: Dict[FunctionSchema, List[NativeFunction]],
functions_by_schema: Dict[str, NativeFunction],
op_counter: Counter[str],
used_dispatch_keys: Set[str],
) -> Tuple[FunctionSchema, Dict[str, DifferentiabilityInfo]]:
"""Processes a single entry `defn` in derivatives.yaml"""
def canonical_function(
functions: Sequence[NativeFunction], name: str
) -> NativeFunction:
for f in functions:
if (
not f.func.is_functional_fn()
and not f.func.is_out_fn()
and name == str(f.func.name.name)
):
return f
# some functions only have in-place variants
assert name + "_" == cpp.name(functions[0].func)
return functions[0]
def split_names(raw_names: str) -> Tuple[str, ...]:
"""Given "foo, bar", return ["foo", "bar"]."""
return tuple(x.strip() for x in raw_names.split(","))
def check_grad_usage(defn_name: str, derivatives: Sequence[Derivative]) -> None:
"""
Check for some subtle mistakes one might make when writing derivatives.
These mistakes will compile, but will be latent until a function is
used with double backwards.
"""
uses_grad = False # true if any derivative uses "grad"
num_grads_uses = 0 # count of uses of "grads" or "grads[INDEX]"
uses_named_grads = False # true if any derivative uses "grad_{name}"
used_grads_indices: List[int] = [] # which indices of grads are used
for d in derivatives:
formula = d.formula
uses_grad = uses_grad or bool(
re.findall(IDENT_REGEX.format("grad"), formula)
)
num_grads_uses += len(re.findall(IDENT_REGEX.format("grads"), formula))
uses_named_grads = uses_named_grads or bool(d.named_gradients)
used_grads_indices.extend(used_gradient_indices(formula))
# This is a basic sanity check: the number of places we see
# "grads" should be no fewer than the number of indices we see
# inside "grads". They may not be equal because we may use
# "grads" without an index.
assert num_grads_uses >= len(used_grads_indices)
# Thus if the number is equal, every use of grads is also
# indexed.
only_used_grads_indices = num_grads_uses == len(used_grads_indices)
if uses_grad and num_grads_uses > 0:
raise RuntimeError(
f"Derivative definition of {defn_name} in derivatives.yaml illegally "
"mixes use of 'grad' and 'grads'. Consider replacing "
"occurrences of 'grad' with 'grads[0]'"
)
if only_used_grads_indices and set(used_grads_indices) == {0}:
raise RuntimeError(
f"Derivative definition of {defn_name} in derivatives.yaml solely "
"refers to 'grads[0]'. If the first output is indeed the "
"only differentiable output, replace 'grads[0]' with 'grad'; "
"otherwise, there is a likely error in your derivatives "
"declaration."
)
if uses_named_grads and (uses_grad or num_grads_uses > 0):
raise RuntimeError(
f"Derivative definition of {defn_name} in derivatives.yaml illegally "
'mixes use of "grad_RETURN_NAME" and "grad" or "grads[x]". Use '
"only one method for identifying gradients."
)
@with_native_function
def set_up_derivatives(
f: NativeFunction,
) -> Tuple[
Sequence[Derivative],
Sequence[ForwardDerivative],
Sequence[Binding],
Sequence[str],
Sequence[str],
]:
# Set up the derivative information
derivatives: List[Derivative] = []
forward_derivatives: List[ForwardDerivative] = []
non_differentiable_arg_names: List[str] = []
args_with_derivatives_set: Set[str] = set()
all_arg_names = [a.name for a in cpp_arguments(f)]
all_ret_names = [
r.name for r in f.func.returns
] # only used for the assert below
# output_differentiability is captured from the enclosed
# scope. Don't modify it.
#
# If it is not present, then no output is explicitly
# undifferentiable.
#
# It may be present and shorter than the length of return
# values. If that's the case, any return value that does not
# have a corresponding entry is considered not differentiable.
differentiability = output_differentiability or [True] * len(f.func.returns)
# A return is available as a named gradient ...
available_named_gradients = [
f"grad_{ret.name}"
for ret, differentiable in zip(f.func.returns, differentiability)
# if it has not been explicitly made undifferentiable
if differentiable
# and if it has a name
and ret.name is not None
# and if its type is differentiable
and ret.type.is_tensor_like()
]
for raw_names in sorted(defn.keys()):
formula = defn[raw_names]
names = split_names(raw_names)
for name in names:
assert not (name in all_arg_names and name in all_ret_names), (
f"While processing the derivative formula for '{f.func.name}' wrt '{name}', "
f"expected '{name}' to not be both an input arg and named return. "
)
if is_forward_derivative_definition(all_arg_names, names):
forward_derivatives.append(create_forward_derivative(f, formula, names))
else:
if formula.lower().strip() == "non_differentiable":
non_differentiable_arg_names += names
else:
derivative = create_derivative(
f, formula, names, available_named_gradients
)
derivatives.append(derivative)
args_with_derivatives_set |= set(names)
overlap = args_with_derivatives_set.intersection(non_differentiable_arg_names)
if overlap:
raise RuntimeError(
f"derivatives definition for {defn} have overlapped non_differentiable "
f"and differentiable variables: {overlap}"
)
# Next, let us determine the list of inputs in order.
# TODO: do we need eagerly calculate and save it here? Can it be derived
# from NativeFunction and `derivatives` on callsites instead?
args_with_derivatives = [
a for a in cpp_arguments(f) if a.name in args_with_derivatives_set
]
# Postprocess forward derivatives definitions now that we know the differentiable arguments
forward_derivatives = postprocess_forward_derivatives(
f,
defn_name,
all_arg_names,
derivatives,
forward_derivatives,
args_with_derivatives,
)
# Test to see if the use of 'grads' makes sense.
check_grad_usage(defn_name, derivatives)
return (
derivatives,
forward_derivatives,
args_with_derivatives,
non_differentiable_arg_names,
available_named_gradients,
)
# NB: Removes 'name' from defn dictionary
specification = defn_dict.pop("name")
defn_name, _ = split_name_params(specification)
# NB: Removes 'output_differentiability' from defn dictionary
# `None` means all differentiable.
output_differentiability = defn_dict.pop("output_differentiability", None)
output_differentiability_conditions = None
if output_differentiability and any(
[isinstance(diff, str) for diff in output_differentiability]
):
if len(output_differentiability) != 1:
raise RuntimeError(
f"Not supported: for {specification},"
f"output_differentiability must either be "
f"List[bool] or a List[str] where each str is a "
f"condition. In the case where it is a condition, "
f"we only support single-output functions. "
f"Please file us an issue. "
)
output_differentiability_conditions = output_differentiability
output_differentiability = [True]
schema_function = functions_by_schema.get(specification)
if not schema_function:
avail = "\n".join(
k for k, v in functions_by_schema.items() if cpp.name(v.func) == defn_name
)
raise RuntimeError(
f"could not find ATen function for schema: {specification} "
f". Available signatures:\n{avail}"
)
# now map this to the legacy schema; this isn't technically necessary, but we'd need some logic here
# to map in-place schemas to the out-of-place variants.
# TODO: maybe the logic to handle the legacy schema is no longer necessary?
signature = schema_function.func.signature()
functions = functions_by_signature[signature]
if len(functions) == 0:
avail = "\n".join(
str(k)
for k, v in functions_by_signature.items()
if cpp.name(k) == defn_name
)
raise RuntimeError(
f"could not find ATen function for legacy signature: {signature} "
f"corresponding to schema {specification}. Please report a bug to PyTorch. "
f"Available signatures:\n{avail}"
)
canonical = canonical_function(functions, defn_name)
if "grad_input_mask" in (a.name for a in cpp_arguments(canonical)):
raise RuntimeError(
f"Schema for {defn_name} has an argument named grad_input_mask, "
"but this name would be shadowed by our codegen. "
"Please use a different name in native_functions.yaml."
)
if "result" in (a.name for a in cpp_arguments(canonical)):
raise RuntimeError(
f"Schema for {defn_name} has an argument named result, "
"but this is only allowed for outputs."
"Please use a different name in native_functions.yaml."
)
diffinfo_dict = {}
for key, defn in defn_dict["dispatch"].items():
if key != "Default" and key not in _VALID_AUTOGRAD_KEYS:
raise RuntimeError(
f"Invalid dispatch key {key} in derivatives.yaml for {specification},"
f" expected key to be one of {_VALID_AUTOGRAD_KEYS}"
)
if key not in used_dispatch_keys:
used_dispatch_keys.add(key)
(
derivatives,
forward_derivatives,
args_with_derivatives,
non_differentiable_arg_names,
available_named_gradients,
) = set_up_derivatives(canonical)
used_named_gradients: Set[str] = set()
for d in derivatives:
used_named_gradients |= d.named_gradients
# only assign an op name if we are actually going to calculate a derivative
op = None
if args_with_derivatives:
op_prefix = _create_op_prefix(defn_name)
if key != "Default":
op_prefix = op_prefix + key
op = f"{op_prefix}{op_counter[op_prefix]}"
op_counter[op_prefix] += 1
diffinfo_dict[key] = DifferentiabilityInfo(
name=defn_name,
func=canonical,
op=op,
derivatives=derivatives,
forward_derivatives=forward_derivatives,
all_saved_inputs=dedup_vars(
[v for d in derivatives for v in d.saved_inputs]
),
all_saved_outputs=dedup_vars(
[v for d in derivatives for v in d.saved_outputs]
),
available_named_gradients=available_named_gradients,
used_named_gradients=used_named_gradients,
args_with_derivatives=args_with_derivatives,
non_differentiable_arg_names=non_differentiable_arg_names,
output_differentiability=output_differentiability,
output_differentiability_conditions=output_differentiability_conditions,
)
return canonical.func, diffinfo_dict
GRAD_INDEX_REGEX = r"(?:^|\W)grads\[(\d+)\]"
def used_gradient_indices(formula: str) -> List[int]:
"""Determine a list of gradient indices (the i in grads[i]) that
are used by the formula.
>>> used_gradient_indices("foo(grads[0], grads[1])")
[0, 1]
"""
return [int(i) for i in re.findall(GRAD_INDEX_REGEX, formula)]
def saved_variables(
formula: str,
nctypes: List[NamedCType],
var_names: Tuple[str, ...],
) -> Tuple[str, Tuple[SavedAttribute, ...]]:
def stride_expr(name: str) -> str:
assert var_names == (name,), (
'Replacement for ".strides()" is currently only supported for single derivatives of the same tensor '
'that ".strides()" is being called on.'
)
return f'strides_or_error({name}, "{name}")'
REPLACEMENTS: List[Tuple[str, Dict[str, Any]]] = [
# replace self.sym_sizes() with self_sym_sizes
(
r"{}.sym_sizes\(\)",
{
"suffix": "_sym_sizes",
"nctype": lambda name: NamedCType(name, BaseCType(symIntArrayRefT)),
},
),
# replace self->sym_sizes() with self_sym_sizes_opt
(
r"{}->sym_sizes\(\)",
{
"suffix": "_sym_sizes_opt",
"nctype": lambda name: NamedCType(
name, OptionalCType(BaseCType(symIntArrayRefT))
),
"expr": lambda name: f"{name}.has_value() ? c10::optional<c10::SymIntArrayRef>({name}->sym_sizes()) : c10::nullopt",
},
),
# replace self.sym_blocksize() with self_sym_blocksize_opt
(
r"{}.sym_blocksize\(\)",
{
"suffix": "_self_sym_blocksize_opt",
"nctype": lambda name: NamedCType(
name, OptionalCType(BaseCType(symIntArrayRefT))
),
"expr": lambda name: f"at::sparse_csr::getSymIntBlockSize({name})",
},
),
# replace self.options() with self_options
(
r"{}.options\(\)",
{
"suffix": "_options",
"nctype": lambda name: NamedCType(name, BaseCType(tensorOptionsT)),
},
),
# replace zeros_like(self) with self_info
(
r"zeros_like\({}\)",
{
"suffix": "_info",
"nctype": lambda name: NamedCType(name, BaseCType(typeAndSizeT)),
"expr": lambda name: name, # at save-time
"res": lambda name: name + "_info.zeros()", # at eval-time
},
),
# replace self.sym_size(2) with self_sym_size_2
(
r"{}.sym_size\((-?\w+)\)",
{
"suffix": lambda m: "_sym_argsize_{}".format(
m.groups()[0].replace("-", "minus_")
),
"nctype": lambda name: NamedCType(name, BaseCType(SymIntT)),
},
),
# replace self.numel() with self_numel
(
r"{}.numel\(\)",
{
"suffix": "_numel",
"nctype": lambda name: NamedCType(name, BaseCType(longT)),
},
),
# replace to_args_sizes(self) with self_args_sizes
(
r"to_args_sizes\({}\)",
{
"suffix": "_args_sizes",
"nctype": lambda name: NamedCType(
name, VectorCType(VectorCType(BaseCType(longT)))
),
},
),
# replace to_args_sizes_symint(self) with self_args_sizes
(
r"to_args_sizes_symint\({}\)",
{
"suffix": "_args_sizes_symint",
"nctype": lambda name: NamedCType(
name, VectorCType(VectorCType(BaseCType(SymIntT)))
),
},
),
# replace to_args_scalartypes(self) with self_args_scalartypes
(
r"to_args_scalartypes\({}\)",
{
"suffix": "_args_scalartypes",
"nctype": lambda name: NamedCType(
name, VectorCType(BaseCType(scalarTypeT))
),
},
),
# replace TensorGeometry(self) with self_geometry
(
r"TensorGeometry\({}\)",
{
"suffix": "_geometry",
"nctype": lambda name: NamedCType(name, BaseCType(tensorGeometryT)),
},
),
(
r"{}.scalar_type\(\)",
{
"suffix": "_scalar_type",
"nctype": lambda name: NamedCType(name, BaseCType(scalarTypeT)),
},
),
# replace self.dim() with self_dim
(
r"{}.dim\(\)",
{
"suffix": "_dim",
"nctype": lambda name: NamedCType(name, BaseCType(longT)),
},
),
# replace self.sym_strides() with self_sym_strides
(
r"{}.sym_strides\(\)",
{
"suffix": "_sym_strides",
"nctype": lambda name: NamedCType(name, BaseCType(symIntArrayRefT)),
"expr": stride_expr,
},
),
# replace self.layout() with self_layout
(
r"{}.layout\(\)",
{
"suffix": "_layout",
"nctype": lambda name: NamedCType(name, BaseCType(layoutT)),
},
),
# replace self.is_conj() with self_conjugate
(
r"{}.is_conj\(\)",
{
"suffix": "_conjugate",
"nctype": lambda name: NamedCType(name, BaseCType(boolT)),
},
),
]
# find which arguments need to be saved
saved: List[SavedAttribute] = []
if ".sizes()" in formula or "->sizes()" in formula:
raise RuntimeError(
".sizes() is not supported in derivative formulas. Instead, please use the SymInt version,"
+ f".sym_sizes(), which returned a c10::SymIntArrayRef. formula={formula}"
)
if re.search(r"\.size\([-]?\d+\)", formula) or re.search(
r"->size\([-]?\d+\)", formula
):
raise RuntimeError(
".size(int) is not supported in derivative formulas. Instead, please use the SymInt version,"
+ f".sym_size(int), which returned a c10::SymIntArrayRef. formula={formula}"
)
if ".strides()" in formula or "->strides()" in formula:
raise RuntimeError(
".strides() is not supported in derivative formulas. Instead, please use the SymInt version,"
+ f".sym_strides(), which returned a c10::SymIntArrayRef. formula={formula}"
)
for nctype in nctypes:
name = (
nctype.name.name if isinstance(nctype.name, SpecialArgName) else nctype.name
)
# First search the formula for expressions which can be evaluated
# when the autograd Function is created to avoid saving variables
for regex, info in REPLACEMENTS:
def repl(m: Match[str]) -> str:
suffix: str = (
info["suffix"](m) if callable(info["suffix"]) else info["suffix"]
)
expr: str = info["expr"](name) if "expr" in info else m.group(0)
saved.append(
SavedAttribute(
nctype=info["nctype"](name + suffix),
expr=expr,
)
)
if "res" in info:
replacement: str = info["res"](name)
return replacement
return name + suffix
formula = re.sub(regex.format(name), repl, formula)
# c10::optional<std::string> types stored in Backward nodes must be
# converted to c10::optional<c10::string_view> before being passed into
# the backward function
if nctype.type == OptionalCType(BaseCType(stringT)):
formula = re.sub(
rf"\b{name}\b",
f"{name}.has_value() ? c10::optional<c10::string_view>({name}.value()) : c10::nullopt",
formula,
)
# Find any variables which remain in the formula and save them
if re.search(IDENT_REGEX.format(name), formula):
saved.append(
SavedAttribute(
nctype=nctype,
expr=name,
)
)
return formula, tuple(saved)
def _create_op_prefix(name: str) -> str:
"""Takes a native function name converts to a op prefix name.
Note that the "name" parameter must be the native function name
without the optional variant suffix, so "add" instead of
"add.out".
OP names correspond to classes, hence the change to title case.
Example::
>>> _create_op_prefix('add')
'AddBackward'
"""
camel_case = "".join([p.title() for p in name.split("_")])
return (camel_case + "Backward").replace("ForwardBackward", "Backward")
def dedup_vars(vars: Sequence[SavedAttribute]) -> Sequence[SavedAttribute]:
seen: Set[str] = set()
saved: List[SavedAttribute] = []
for var in vars:
name = (
var.nctype.name.name
if isinstance(var.nctype.name, SpecialArgName)
else var.nctype.name
)
if name in seen:
continue
seen.add(name)