In order to train the models described in the paper, we need to first download and pre-process the dataset. To do so, please follow the instructions in urbanlanegraph_dataset/DOWNLOAD.md and urbanlanegraph_dataset/PROCESS_DATA.md.
We leverage two centerline regression modules in our paper:
- lane centerline regression (regressing all visible lane centerlines)
- ego lane centerline regression (regressing the centerline of the ego-agent lane)
The ego lane centerline regression model gets as input both the RGB images and the lane centerline regression model output.
python train_centerline_regression.py --dataset-root /path/to/raw/cropped/dataset --sdf_version centerlines-sdf
python train_centerline_regression.py --dataset-root /path/to/raw/cropped/dataset --sdf_version centerlines-sdf-ego-context --checkpoint_path_context_regression /path/to/context_regression_model.pth
python train_lanegnn.py --config lanegnn/config/config.yaml --train_path /path/to/processsed/cropped/dataset/train --eval_path /path/to/processsed/cropped/dataset/eval
The config file contains the following parameters: