-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_qg.py
126 lines (104 loc) · 4.37 KB
/
finetune_qg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import pickle
import json
import random
import numpy as np
from collections import deque
from datasets import load_from_disk, Dataset, DatasetDict
#import transformers
#import evaluate
import torch
from torch import nn
from nar_transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from nar_transformers.models.bart.modeling_diffusion_bart import BartModel, BartForConditionalGeneration
from nar_transformers import Trainer, EvalPrediction
from nar_transformers import HfArgumentParser, TrainingArguments
from diff_args import DiffusionTrainingArguments, DiffusionInferenceArguments
from evaluator import Evaluate
import wandb
os.environ["WANDB_MODE"] = "online"
os.environ["WANDB_PROJECT"] = "Diffusion-loss"
parser = HfArgumentParser((TrainingArguments, DiffusionTrainingArguments, DiffusionInferenceArguments))
training_args, diff_args, diff_infer_args = parser.parse_args_into_dataclasses()
print(diff_args, diff_infer_args)
#model_name = "google-bert/bert-large-uncased"
#model_name = "google-bert/bert-base-uncased"
#model_name = "google/bert_uncased_L-8_H-512_A-8" # medium
#model_name = "google/bert_uncased_L-4_H-512_A-8" # small
#model_name = "google/bert_uncased_L-2_H-128_A-2" # tiny
model_name = "facebook/bart-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.add_tokens(["[BLANK]"], special_tokens=True)
#model = BaselineModel.from_encoder_decoder_pretrained(model_name, model_name, tokenizer)
model = BartForConditionalGeneration.from_pretrained(model_name)
# Add blank token
model.resize_token_embeddings(len(tokenizer))
model.config.blank_token_id = tokenizer.convert_tokens_to_ids(["[BLANK]"])[0]
source_max_length = 512
target_max_length = 128
model.init_diff_params(diff_args)
model.init_schedule()
model.init_diff_params(diff_infer_args)
model.config.decoder_start_token_id = tokenizer.cls_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.config.mask_token_id = tokenizer.mask_token_id
#data_dir = f"/scratch/aae15163zd/corpus/datasets/{model.config.task_name}/"
data_dir = "/home/ubuntu/asada-data/dataset/Squad/"
dataset_dir = os.path.join(data_dir, f"diff-src-{source_max_length}-trg-{target_max_length}")
if os.path.exists(dataset_dir):
ds = load_from_disk(dataset_dir, keep_in_memory=True)
else:
d = {}
for split in ("train", "valid", "test"):
with open(os.path.join(data_dir, f"{split}.jsonl")) as f:
jsonl_data = [json.loads(l) for l in f.readlines()]
d[split] = Dataset.from_list(jsonl_data)
ds = DatasetDict(d)
def process_data_to_model_inputs(batch):
# tokenize the inputs and labels
#inputs = tokenizer(batch["answer"], batch["context"], padding="max_length", truncation="only_second",
# max_length=source_max_length)
inputs = tokenizer(batch["src"], padding="max_length", truncation=True, max_length=source_max_length)
outputs = tokenizer(batch["trg"], padding="max_length", truncation=True, max_length=target_max_length)
batch["input_ids"] = inputs.input_ids
batch["attention_mask"] = inputs.attention_mask
batch["decoder_input_ids"] = outputs.input_ids
batch["decoder_attention_mask"] = outputs.attention_mask
batch["labels"] = outputs.input_ids.copy()
return batch
ds = ds.map(
process_data_to_model_inputs,
batched=True,
num_proc=40,
keep_in_memory=True,
)
ds.save_to_disk(dataset_dir)
calculator = Evaluate()
import pickle
def compute_metrics(p: EvalPrediction):
label_ids = p.label_ids
pred_ids = p.predictions
# Removing repetition tokens
pred_ids = [
[x[i] if i == 0 or x[i-1] != x[i] else tokenizer.pad_token_id for i in range(len(x))] for x in pred_ids
]
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
print(pred_str[:3])
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
pred_str = [s.lower().strip() for s in pred_str]
label_str = [s.lower().strip() for s in label_str]
eval_dict = calculator.evaluate(pred_str, label_str)
# Remove items for ease of viewing
for i in (1, 2, 3):
eval_dict.pop(f"Bleu_{i}")
return eval_dict
# instantiate trainer
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=ds["train"],
eval_dataset=ds["test"],
)
trainer.train()