-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_sum.py
143 lines (116 loc) · 4.9 KB
/
finetune_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import pickle
import json
import random
import numpy as np
from collections import deque
from datasets import load_from_disk, load_dataset, Dataset, DatasetDict
#import transformers
import evaluate
from torch import nn
from nar_transformers import AutoTokenizer, AutoModelForCausalLM
#from nar_transformers import EncoderDecoderConfig, EncoderDecoderModel
from nar_transformers.models.encoder_decoder.modeling_baseline import BaselineModel
from nar_transformers.models.bart.modeling_diffusion_bart import BartModel, BartForConditionalGeneration
from nar_transformers import Trainer, EvalPrediction
from nar_transformers import HfArgumentParser, TrainingArguments
from diff_args import DiffusionArguments
import wandb
os.environ["WANDB_MODE"] = "offline"
os.environ["WANDB_PROJECT"] = "NAR-NAACL"
run_name = "qg-squad-small"
parser = HfArgumentParser((TrainingArguments, DiffusionArguments))
training_args, diff_args = parser.parse_args_into_dataclasses()
print(training_args, diff_args)
#model_name = "google-bert/bert-large-uncased"
#model_name = "google-bert/bert-base-uncased"
#model_name = "google/bert_uncased_L-8_H-512_A-8" # medium
#model_name = "google/bert_uncased_L-4_H-512_A-8" # small
#model_name = "google/bert_uncased_L-2_H-128_A-2" # tiny
#model_name = "bert-base-uncased"
model_name = "facebook/bart-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.add_tokens(["[BLANK]"], special_tokens=True)
#model = BaselineModel.from_encoder_decoder_pretrained(model_name, model_name, tokenizer)
model = BartForConditionalGeneration.from_pretrained(model_name)
# Add blank token
model.resize_token_embeddings(len(tokenizer))
model.config.blank_token_id = tokenizer.convert_tokens_to_ids(["[BLANK]"])[0]
source_max_length = 512
target_max_length = 128
model.init_noise(diff_args, msl=target_max_length)
model.config.decoder_start_token_id = tokenizer.cls_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.config.mask_token_id = tokenizer.mask_token_id
#special_token_ids = []
#for k, v in tokenizer.special_tokens_map.items():
# if k == "mask_token": continue
# special_token_ids.append(tokenizer.convert_tokens_to_ids(v))
#model.config.special_token_ids = special_token_ids
src_column = "src"
tgt_column = "trg"
def process_data_to_model_inputs(batch):
# tokenize the inputs and labels
inputs = tokenizer(batch[src_column], padding="max_length", truncation=True, max_length=source_max_length)
outputs = tokenizer(batch[tgt_column], padding="max_length", truncation=True, max_length=target_max_length)
batch["input_ids"] = inputs.input_ids
batch["attention_mask"] = inputs.attention_mask
batch["decoder_input_ids"] = outputs.input_ids
batch["decoder_attention_mask"] = outputs.attention_mask
batch["labels"] = outputs.input_ids.copy()
# We have to make sure that the PAD token is ignored
batch["labels"] = [[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]]
return batch
d_dir = "/groups/gac50543/migrated_from_SFA_GPFS/asada/corpus/datasets/XSum/"
d = {}
for split in ("train", "valid", "test"):
with open(os.path.join(d_dir, f"{split}.jsonl")) as f:
jsonl_data = [json.loads(l) for l in f.readlines()]
d[split] = Dataset.from_list(jsonl_data)
ds = DatasetDict(d)
ds = ds.map(
process_data_to_model_inputs,
batched=True,
num_proc=40,
keep_in_memory=True,
)
# load rouge for validation
rouge = evaluate.load("rouge")
import pickle
def compute_metrics(p: EvalPrediction):
label_ids = p.label_ids
label_ids[label_ids == -100] = tokenizer.pad_token_id
pred_ids = p.predictions
#pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=False)
#print(pred_str[:3])
# Removing repetition tokens
pred_ids = [
[x[i] if i == 0 or x[i-1] != x[i] else tokenizer.pad_token_id for i in range(len(x))] for x in pred_ids
]
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
print(pred_str[:3])
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
pred_str = [s.lower() for s in pred_str]
label_str = [s.lower() for s in label_str]
with open("./output_texts/xsum_refs.txt", "w") as f:
f.write("\n".join(label_str + [""]))
with open("./output_texts/xsum_preds.txt", "w") as f:
f.write("\n".join(pred_str + [""]))
rouge_output = rouge.compute(predictions=pred_str, references=label_str)
return {
"rouge1": round(np.mean(rouge_output["rouge1"]), 4),
"rouge2": round(np.mean(rouge_output["rouge2"]), 4),
"rougeL": round(np.mean(rouge_output["rougeL"]), 4),
}
# instantiate trainer
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=ds["train"],
#eval_dataset=ds["valid"],
eval_dataset=ds["test"],
)
trainer.train()
#trainer.train(resume_from_checkpoint=True)