-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_evaluation.py
293 lines (258 loc) · 12 KB
/
run_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from utils.parser_utils import *
# from parser_run import *
from utils.evaluate import evaluate_metrics
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import warnings
parsers = [
# non-LLM parsers
# "Drain",
# "ULP",
# "Brain",
# "Logram",
# "AEL",
# unsupervised parsers
"LLM_TD",
"LogBatcher",
"LogPrompt",
"OpenLogParser",
"SelfLog",
# supervised parsers
"DivLog-2",
"DivLog-4",
"LILAC-4",
"LILAC-2",
]
non_llm_parsers = sorted(["Drain", "Brain", "ULP", "AEL", "SPELL"]) #"Logram",
datasets = [
'Android',
'Apache',
'BGL',
'HDFS',
'HPC',
'Hadoop',
'HealthApp',
'Linux',
'Mac',
'OpenSSH',
'OpenStack',
'Proxifier',
'Spark',
'Thunderbird',
'Windows',
'Zookeeper',
"Audit" # custom
]
total_runs = 3
params = {
"in_dir": DATA_FOLDER + "2k/",
"dataset_type": "2k",
"log_format": True,
}
def evaluate(model, multiple_runs_list, datasets, parsers, corrected_LogHub=True):
str_add = "_corrected_LogHub" if corrected_LogHub else "_LogHub"
limit = 2000
for dataset in datasets:
input_dir = params["in_dir"]
for parser in parsers:
print(f"--- {dataset} - {parser}", flush=True)
corrected_str = "_corrected" if corrected_LogHub else ""
groundtruth_path = os.path.join(input_dir, dataset, f"{dataset}_{params["dataset_type"]}.log_structured{corrected_str}.csv")
results_runs = []
for run in range(1,total_runs+1):
run_dir = f"run{run}" if parser in multiple_runs_list else ""
out_dir = os.path.join(OUTPUT_FOLDER, model, parser, run_dir)
result_path = os.path.join(out_dir, f"{dataset}_{params["dataset_type"]}.log_structured.csv")
#result_path = os.path.join(OUTPUT_FOLDER, parser, f"{dataset}_{params["dataset_type"]}.log_structured.csv")
if not os.path.exists(result_path):
print("Path doesn't exist:", result_path)
continue
df_result = evaluate_metrics(dataset, groundtruth_path, result_path, limit=limit)
# display(df_result)
if df_result is None:
print("Skipping")
continue
summary_path = os.path.join(out_dir, f"_summary{str_add}.csv")
if not os.path.exists(summary_path):
df_result.to_csv(summary_path, index=False)
else:
df_result.to_csv(summary_path, index=False, mode="a", header=False)
if parser not in multiple_runs_list:
break
results_runs.append(df_result.set_index("Dataset"))
if parser not in multiple_runs_list:
continue
df_results_runs = reduce(lambda x, y: x.add(y, fill_value=0), results_runs)/total_runs
summary_path = os.path.join(OUTPUT_FOLDER, model, parser, f"_summary{str_add}.csv")
if not os.path.exists(summary_path):
df_results_runs.to_csv(summary_path, index=True)
else:
df_results_runs.to_csv(summary_path, index=True, mode="a", header=False)
def get_results(model, parsers, corrected_LogHub=True, exclude=[]):
parsers_list = [p for p in parsers if p not in exclude]
dfs = []
str_add = "_corrected_LogHub" if corrected_LogHub else "_LogHub"
for i, parser in enumerate(parsers_list):
path = os.path.join(OUTPUT_FOLDER, model, parser, f"_summary{str_add}.csv")
try:
df_res = pd.read_csv(path).drop_duplicates(subset=["Dataset"], keep="last").set_index("Dataset")
dfs.append(df_res[["GA","FTA","PA","NED"]])
except Exception as e:
print(f"Error: {e}")
continue
df_full = pd.concat(dfs, axis=1, keys=parsers_list)
#pd.set_option("display.max_columns", None)
#display(df_full.round(3))
return df_full
def plot(df, parsers, exclude=[], save_path=None, ylim=(-0.02,1.02)):
#parsers_list = [p for p in parsers if p not in exclude]
dataframes = [df[p] if p not in exclude else df[parsers[0]].map(lambda x: -1) for p in parsers]
plt.rcParams.update({'font.size': 8.5})
fig, axes = plt.subplots(nrows=1, ncols=len(dataframes), figsize=(11/9*(len(dataframes)), 2.5), sharey=True)
for ax, df_, title in zip(axes, dataframes, parsers):
sns.boxplot(data=df_, ax=ax)
ax.set_title(title)
plt.ylim(ylim)
plt.tight_layout()
if save_path is not None:
plt.savefig(save_path)
def plot_bar(df, parsers, exclude=[], width=11, height=3, save_path=None):
parsers_list = [p for p in parsers if p not in exclude]
dataframes = [df[p] for p in parsers_list]
plt.rcParams.update({'font.size': 8.5})
fig, axes = plt.subplots(nrows=1, ncols=len(dataframes), figsize=(width/9*len(parsers_list), height), sharey=True)
for ax, df_, title in zip(axes, dataframes, parsers_list):
sns.barplot(data=df_, ax=ax)
ax.set_title(title)
#plt.ylim((-0.02,1.02))
plt.tight_layout()
if save_path is not None:
plt.savefig(save_path)
def plot_bar_stacked(df, parsers, exclude=[], width=11, height=3, save_path=None):
parsers_list = [p for p in parsers if p not in exclude]
dataframes = [df[p] for p in parsers_list]
plt.rcParams.update({'font.size': 8.5})
n_cols = len(dataframes) // 2 + len(dataframes) % 2 # Calculate number of columns for two rows
fig, axes = plt.subplots(nrows=2, ncols=n_cols, figsize=(width/9*n_cols, height * 2), sharey=True)
axes = axes.flatten() # Flatten axes for easier iteration
for ax, df_, title in zip(axes, dataframes, parsers_list):
sns.barplot(data=df_, ax=ax)
ax.set_title(title)
# Hide any unused subplots
for ax in axes[len(dataframes):]:
ax.axis('off')
plt.ylim((-0.02, 1.02))
plt.tight_layout()
if save_path is not None:
plt.savefig(save_path)
def get_time_eval(df, parsers, sort_by="Computation Time"):
if sum(df["run"] != 2) != 0:
print("Number of runs not equal to 3!") # safety check
total_mean = [df.loc[p]["total_runtime"].mean() for p in parsers]
total_std = [df.loc[p]["total_runtime"].std() for p in parsers]
invoc_mean = [df.loc[p]["invocation_time"].mean() for p in parsers]
invoc_std = [df.loc[p]["invocation_time"].std() for p in parsers]
comp_mean = [(df.loc[p]["total_runtime"] - df.loc[p]["invocation_time"]).mean() for p in parsers]
comp_std = [(df.loc[p]["total_runtime"] - df.loc[p]["invocation_time"]).std() for p in parsers]
columns = pd.MultiIndex.from_tuples([
('Computation Time', r'$\mu$'),
('Computation Time', r'$\sigma$'),
('Invocation Time', r'$\mu$'),
('Invocation Time', r'$\sigma$'),
('Total Runtime', r'$\mu$'),
('Total Runtime', r'$\sigma$'),
])
data = [[comp_mean[i], comp_std[i], invoc_mean[i], invoc_std[i], total_mean[i], total_std[i]] for i in range(len(total_mean))]
time_df = pd.DataFrame(data, columns=columns, index=parsers)
return time_df.sort_values(by=(sort_by, r'$\mu$'), ascending=False).round(2)
def get_time_table(model, parsers, datasets, folder=None, ):
if folder:
df_time_raw = pd.read_csv(os.path.join(folder, model, "times.csv"))
else:
df_time_raw = pd.read_csv(os.path.join(OUTPUT_FOLDER, model, "times.csv"))
df_time_raw = df_time_raw.sort_values(by=["parser","dataset","run"])
df_time = df_time_raw[df_time_raw['dataset'] != 'Audit-light']#.groupby(['parser', "dataset"]).tail(3)
tmp_list = []
# use for loop because groupby does weird things ...
for parser in parsers:
for dataset in datasets:
for run in range(1, total_runs + 1):
tmp = df_time[df_time["parser"] == parser]
tmp = tmp[df_time["dataset"] == dataset]
tmp = tmp[df_time["run"] == run].tail(1)
tmp_list.append(tmp)
df_time_avg = pd.concat(tmp_list)
df_time_avg = df_time_avg.groupby(['parser', "dataset"])[["run","total_runtime","invocation_time","n_queries"]].sum().apply(lambda x: x/total_runs)
return df_time_avg
def check_decimal(x):
if len(x) != 4:
return x + "0"
else:
return x
# plot results per LLM
def extract(df):
parsers_list = [p for p in parsers if p not in ["LogPrompt"]] # exclude LogPrompt
return sum([df[p] for p in parsers_list])/len(parsers_list)
evaluate("no-LLM", non_llm_parsers, datasets, non_llm_parsers, corrected_LogHub=True)
df_no_llm = get_results("no-LLM", non_llm_parsers, corrected_LogHub=True)
plot(df_no_llm, non_llm_parsers, save_path="plots/no_llm.pdf")
evaluate("codellama:7b-instruct", parsers, datasets, parsers, corrected_LogHub=True)
df_codellama = get_results("codellama:7b-instruct", parsers, corrected_LogHub=True)
evaluate("gpt-3.5-turbo", parsers, datasets, parsers, corrected_LogHub=True)
df_gpt = get_results("gpt-3.5-turbo", parsers, corrected_LogHub=True)
evaluate("gpt-3.5-turbo_LogHub", parsers, datasets, parsers, corrected_LogHub=False)
df_gpt_uncorrected = get_results("gpt-3.5-turbo_LogHub", parsers, corrected_LogHub=False)
p_list = parsers.copy()
p_list.remove("LogPrompt")
evaluate("deepseek-ai/DeepSeek-R1", p_list, datasets, p_list, corrected_LogHub=True)
df_deepseek = get_results("deepseek-ai/DeepSeek-R1", parsers, exclude=["LogPrompt"], corrected_LogHub=True)
plot(df_codellama, parsers, save_path="plots/codellama.pdf")
plot(df_gpt, parsers, save_path="plots/gpt.pdf")
# plot(df_gpt_uncorrected, parsers, save_path="plots/gpt_uncorrected.pdf")
plot(df_deepseek, parsers, exclude=["LogPrompt"], save_path="plots/deepseek.pdf")
df_diff = (df_gpt.drop(index="Audit")-df_gpt_uncorrected.drop(index="Audit"))
plot(df_diff, parsers, save_path="plots/gpt_minus_gpt_uncorrected.pdf", ylim=(-1.1,1.1))
df_gpt_incl_non_llm_parser = pd.concat([df_no_llm, df_gpt], axis=1)
sorted_columns = df_gpt_incl_non_llm_parser.loc["Audit"].loc[:,"GA"].sort_values(ascending=False).index
df_sorted = df_gpt_incl_non_llm_parser[sorted_columns]
plot_bar_stacked(pd.DataFrame(df_sorted.loc["Audit"]).T, sorted_columns, width=10, height=2, save_path="plots/gpt_incl_no_llm_audit.pdf")
# # print table with best performances in bold
# tmp = df_gpt_incl_non_llm_parser.T.copy()
# tmp["Average"] = tmp.mean(axis=1).round(2)
# table = tmp.T.round(2).copy()
# for d in datasets + ["Average"]:
# for m in ["GA", "FTA", "PA", "NED"]:
# values = {p: table.loc[d, (p, m)] for p in non_llm_parsers + parsers}
# max_value = max(values.values())
# best_parsers = [p for p, v in values.items() if v == max_value]
# for best_parser in best_parsers:
# table.loc[d, (best_parser, m)] = r"\textbf{" + check_decimal(str(table.round(2).loc[d, (best_parser, m)])) + r"}"
# # print to latex
# tab = table.T
# tab = tab.rename(index={c: r"\textbf{" + str(c) + r"}" for c in tab.index})
# tab = tab.rename(columns={c: r"\begin{turn}{90}{" + str(c) + r"}\end{turn}" for c in tab.columns})
# print(tab.to_latex(float_format="%.2f"))
dfs = {"CodeLlama": extract(df_codellama), "GPT-3.5": extract(df_gpt), "DeepSeek R1": extract(df_deepseek)}
plot(dfs, dfs.keys(), save_path="plots/all_models_aggregated.pdf")
# prepare plots for efficiency evaluation
warnings.filterwarnings("ignore", message="Boolean Series key will be reindexed to match DataFrame index")
runtime_parsers = [
"Drain",
"ULP",
"Brain",
"SPELL",
"AEL",
"OpenLogParser",
# "LogPrompt",
"LLM_TD",
"LogBatcher",
# "SelfLog", # SelfLog got killed
"LILAC-2",
"LILAC-4",
]
df_time_bgl = get_time_table("gpt-3.5-turbo", runtime_parsers, datasets=["BGL"], folder="output-full/")
time_table_bgl = get_time_eval(df_time_bgl, parsers=runtime_parsers, sort_by="Computation Time")
df_time_hdfs = get_time_table("gpt-3.5-turbo", runtime_parsers, datasets=["HDFS"], folder="output-full/")
time_table_hdfs = get_time_eval(df_time_hdfs, parsers=runtime_parsers, sort_by="Computation Time")
print("Plots procuded!")