-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cifar10.py
executable file
·134 lines (116 loc) · 4.67 KB
/
train_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
from torch import nn
import torchvision.datasets as dset
import numpy as np
import logging
import argparse
import time
import os
from supernet import Trainer, FBNet
# from data import get_ds
from candblks import get_blocks
from utils import _logger, _set_file
class Config(object):
num_cls_used = 0
init_theta = 1.0
alpha = 0.2
beta = 0.6
speed_f = './speed_cpu.txt'
w_lr = 0.1
w_mom = 0.9
w_wd = 1e-4
t_lr = 0.01
t_wd = 5e-4
t_beta = (0.9, 0.999)
init_temperature = 5.0
temperature_decay = 0.956
model_save_path = './term_output'
total_epoch = 90
start_w_epoch = 1
train_portion = 0.8
lr_scheduler_params = {
'logger' : _logger,
'T_max' : 400,
'alpha' : 1e-4,
'warmup_step' : 100,
't_mul' : 1.5,
'lr_mul' : 0.98,
}
config = Config()
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(description="Train a model with data parallel for base net \
and model parallel for classify net.")
parser.add_argument('--batch-size', type=int, default=256,
help='training batch size of all devices.')
parser.add_argument('--epochs', type=int, default=200,
help='number of training epochs.')
parser.add_argument('--log-frequence', type=int, default=100,
help='log frequence, default is 400')
parser.add_argument('--gpus', type=str, default='0',
help='gpus, default is 0')
parser.add_argument('--load-model-path', type=str, default=None,
help='re_train, default is None')
parser.add_argument('--num-workers', type=int, default=4,
help='number of subprocesses used to fetch data, default is 4')
parser.add_argument('--tb-log', type=str, default=None, help = 'log directory for tensorboard folder name')
parser.add_argument('--warmup', type=int, default=2, help = 'number of epochs to warmup')
parser.add_argument('--alpha', type=float, default=0, help='scaling term for latency loss default 0')
parser.add_argument('--beta', type=float, default=0, help='power term for latency loss default 0')
parser.add_argument('--gamma', type=float, default=0, help='scaling term for energy loss default 0')
parser.add_argument('--delta', type=float, default=0, help='power term for energy loss default 0')
parser.add_argument('--energy-file', type=str, default='new_rpi_energy.txt', help = 'target device energy file')
parser.add_argument('--latency-file', type=str, default='speed.txt', help = 'target device latency file')
args = parser.parse_args()
args.model_save_path = '%s/%s/' % \
(config.model_save_path, args.tb_log)
if not os.path.exists(args.model_save_path):
_logger.warn("{} not exists, create it".format(args.model_save_path))
os.makedirs(args.model_save_path)
_set_file(args.model_save_path + 'log.log')
import torchvision.transforms as transforms
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
train_data = dset.CIFAR10(root='./data', train=True,
download=True, transform=train_transform)
num_train = len(train_data)
indices = list(range(num_train))
split = int(np.floor(config.train_portion * num_train))
train_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size,
shuffle=True, pin_memory=True, num_workers=16)
val_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size,
pin_memory=True, num_workers=8)
blocks = get_blocks(cifar10=True)
model = FBNet(num_classes=config.num_cls_used if config.num_cls_used > 0 else 10,
blocks=blocks,
init_theta=config.init_theta,
alpha=args.alpha,
beta=args.beta,
gamma=args.gamma,
delta=args.delta,
speed_f=args.latency_file,
energy_f=args.energy_file)
trainer = Trainer(network=model,
w_lr=config.w_lr,
w_mom=config.w_mom,
w_wd=config.w_wd,
t_lr=config.t_lr,
t_wd=config.t_wd,
t_beta=config.t_beta,
init_temperature=config.init_temperature,
temperature_decay=config.temperature_decay,
logger=_logger,
lr_scheduler=lr_scheduler_params,
gpus=args.gpus,
save_tb_log=args.tb_log)
trainer.search(train_queue, val_queue,
total_epoch=config.total_epoch,
start_w_epoch=args.warmup,
log_frequence=args.log_frequence)