-
Notifications
You must be signed in to change notification settings - Fork 449
/
Copy pathpls.Rmd
302 lines (217 loc) · 8.6 KB
/
pls.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Public Libraries Survey (PLS) {-}
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) <a href="https://github.com/asdfree/pls/actions"><img src="https://github.com/asdfree/pls/actions/workflows/r.yml/badge.svg" alt="Github Actions Badge"></a>
A comprehensive compilation of administrative information on all public libraries in the United States.
* Two tables, with one record per library system and one record per library building or bookmobile.
* Released annually since 1992.
* Conducted by the [Institute of Museum and Library Services (IMLS)](https://www.imls.gov/), collected by the [Census Bureau](http://www.census.gov/).
---
## Recommended Reading {-}
Two Methodology Documents:
> [Data File Documentation and User's Guide](https://www.imls.gov/sites/default/files/2023-06/2021_pls_data_file_documentation.pdf)
> `README FY #### PLS PUD.txt` included in each [zipped file](https://www.imls.gov/sites/default/files/2023-06/pls_fy2021_csv.zip)
<br>
One Haiku:
```{r}
# census, not survey.
# dewey decimal index
# finger to lips shush
```
---
## Download, Import, Preparation {-}
Download and import the most recent administrative entity csv file:
```{r eval = FALSE , results = "hide" }
this_tf <- tempfile()
csv_url <- "https://www.imls.gov/sites/default/files/2023-06/pls_fy2021_csv.zip"
download.file( csv_url , this_tf, mode = 'wb' )
unzipped_files <- unzip( this_tf , exdir = tempdir() )
administrative_entity_csv_fn <-
unzipped_files[ grepl( 'AE(.*)csv$' , basename( unzipped_files ) ) ]
pls_df <- read.csv( administrative_entity_csv_fn )
names( pls_df ) <- tolower( names( pls_df ) )
pls_df[ , 'one' ] <- 1
```
Recode missing values as described in the readme included with each zipped file:
```{r eval = FALSE , results = "hide" }
for( this_col in names( pls_df ) ){
if( class( pls_df[ , this_col ] ) == 'character' ){
pls_df[ pls_df[ , this_col ] %in% 'M' , this_col ] <- NA
}
if(
( class( pls_df[ , this_col ] ) == 'numeric' ) |
( this_col %in% c( 'phone' , 'startdat' , 'enddate' ) )
){
pls_df[ pls_df[ , this_col ] %in% c( -1 , -3 , -4 , -9 ) , this_col ] <- NA
}
}
```
### Save Locally \ {-}
Save the object at any point:
```{r eval = FALSE , results = "hide" }
# pls_fn <- file.path( path.expand( "~" ) , "PLS" , "this_file.rds" )
# saveRDS( pls_df , file = pls_fn , compress = FALSE )
```
Load the same object:
```{r eval = FALSE , results = "hide" }
# pls_df <- readRDS( pls_fn )
```
### Variable Recoding {-}
Add new columns to the data set:
```{r eval = FALSE , results = "hide" }
pls_df <-
transform(
pls_df ,
c_relatn =
factor( c_relatn , levels = c( "HQ" , "ME" , "NO" ) ,
c( "HQ-Headquarters of a federation or cooperative" ,
"ME-Member of a federation or cooperative" ,
"NO-Not a member of a federation or cooperative" )
) ,
more_than_one_librarian = as.numeric( libraria > 1 )
)
```
---
## Analysis Examples with base R \ {-}
### Unweighted Counts {-}
Count the unweighted number of records in the table, overall and by groups:
```{r eval = FALSE , results = "hide" }
nrow( pls_df )
table( pls_df[ , "stabr" ] , useNA = "always" )
```
### Descriptive Statistics {-}
Calculate the mean (average) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
mean( pls_df[ , "popu_lsa" ] , na.rm = TRUE )
tapply(
pls_df[ , "popu_lsa" ] ,
pls_df[ , "stabr" ] ,
mean ,
na.rm = TRUE
)
```
Calculate the distribution of a categorical variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
prop.table( table( pls_df[ , "c_relatn" ] ) )
prop.table(
table( pls_df[ , c( "c_relatn" , "stabr" ) ] ) ,
margin = 2
)
```
Calculate the sum of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
sum( pls_df[ , "popu_lsa" ] , na.rm = TRUE )
tapply(
pls_df[ , "popu_lsa" ] ,
pls_df[ , "stabr" ] ,
sum ,
na.rm = TRUE
)
```
Calculate the median (50th percentile) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
quantile( pls_df[ , "popu_lsa" ] , 0.5 , na.rm = TRUE )
tapply(
pls_df[ , "popu_lsa" ] ,
pls_df[ , "stabr" ] ,
quantile ,
0.5 ,
na.rm = TRUE
)
```
### Subsetting {-}
Limit your `data.frame` to more than one million annual visits:
```{r eval = FALSE , results = "hide" }
sub_pls_df <- subset( pls_df , visits > 1000000 )
```
Calculate the mean (average) of this subset:
```{r eval = FALSE , results = "hide" }
mean( sub_pls_df[ , "popu_lsa" ] , na.rm = TRUE )
```
### Measures of Uncertainty {-}
Calculate the variance, overall and by groups:
```{r eval = FALSE , results = "hide" }
var( pls_df[ , "popu_lsa" ] , na.rm = TRUE )
tapply(
pls_df[ , "popu_lsa" ] ,
pls_df[ , "stabr" ] ,
var ,
na.rm = TRUE
)
```
### Regression Models and Tests of Association {-}
Perform a t-test:
```{r eval = FALSE , results = "hide" }
t.test( popu_lsa ~ more_than_one_librarian , pls_df )
```
Perform a chi-squared test of association:
```{r eval = FALSE , results = "hide" }
this_table <- table( pls_df[ , c( "more_than_one_librarian" , "c_relatn" ) ] )
chisq.test( this_table )
```
Perform a generalized linear model:
```{r eval = FALSE , results = "hide" }
glm_result <-
glm(
popu_lsa ~ more_than_one_librarian + c_relatn ,
data = pls_df
)
summary( glm_result )
```
---
## Replication Example {-}
This example matches Interlibrary Relationship Frequencies on [PDF page 169 of the User's Guide](https://www.imls.gov/sites/default/files/2023-06/2021_pls_data_file_documentation.pdf#page=169):
```{r eval = FALSE , results = "hide" }
# remove closed and temporarily closed libraries
results <- table( pls_df[ !( pls_df[ , 'statstru' ] %in% c( 3 , 23 ) ) , 'c_relatn' ] )
stopifnot( results[ "HQ-Headquarters of a federation or cooperative" ] == 112 )
stopifnot( results[ "ME-Member of a federation or cooperative" ] == 6859 )
stopifnot( results[ "NO-Not a member of a federation or cooperative" ] == 2236 )
```
---
## Analysis Examples with `dplyr` \ {-}
The R `dplyr` library offers an alternative grammar of data manipulation to base R and SQL syntax. [dplyr](https://github.com/tidyverse/dplyr/) offers many verbs, such as `summarize`, `group_by`, and `mutate`, the convenience of pipe-able functions, and the `tidyverse` style of non-standard evaluation. [This vignette](https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html) details the available features. As a starting point for PLS users, this code replicates previously-presented examples:
```{r eval = FALSE , results = "hide" }
library(dplyr)
pls_tbl <- as_tibble( pls_df )
```
Calculate the mean (average) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
pls_tbl %>%
summarize( mean = mean( popu_lsa , na.rm = TRUE ) )
pls_tbl %>%
group_by( stabr ) %>%
summarize( mean = mean( popu_lsa , na.rm = TRUE ) )
```
---
## Analysis Examples with `data.table` \ {-}
The R `data.table` library provides a high-performance version of base R's data.frame with syntax and feature enhancements for ease of use, convenience and programming speed. [data.table](https://r-datatable.com) offers concise syntax: fast to type, fast to read, fast speed, memory efficiency, a careful API lifecycle management, an active community, and a rich set of features. [This vignette](https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html) details the available features. As a starting point for PLS users, this code replicates previously-presented examples:
```{r eval = FALSE , results = 'hide' }
library(data.table)
pls_dt <- data.table( pls_df )
```
Calculate the mean (average) of a linear variable, overall and by groups:
```{r eval = FALSE , results = 'hide' }
pls_dt[ , mean( popu_lsa , na.rm = TRUE ) ]
pls_dt[ , mean( popu_lsa , na.rm = TRUE ) , by = stabr ]
```
---
## Analysis Examples with `duckdb` \ {-}
The R `duckdb` library provides an embedded analytical data management system with support for the Structured Query Language (SQL). [duckdb](https://duckdb.org) offers a simple, feature-rich, fast, and free SQL OLAP management system. [This vignette](https://duckdb.org/docs/api/r) details the available features. As a starting point for PLS users, this code replicates previously-presented examples:
```{r eval = FALSE , results = 'hide' }
library(duckdb)
con <- dbConnect( duckdb::duckdb() , dbdir = 'my-db.duckdb' )
dbWriteTable( con , 'pls' , pls_df )
```
Calculate the mean (average) of a linear variable, overall and by groups:
```{r eval = FALSE , results = 'hide' }
dbGetQuery( con , 'SELECT AVG( popu_lsa ) FROM pls' )
dbGetQuery(
con ,
'SELECT
stabr ,
AVG( popu_lsa )
FROM
pls
GROUP BY
stabr'
)
```