-
Notifications
You must be signed in to change notification settings - Fork 86
/
config.py
348 lines (286 loc) · 13.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"""
Sets default args
Note all data format is NHWC because slim resnet wants NHWC.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os.path as osp
from os import makedirs
from glob import glob
from datetime import datetime
from absl import flags
import json
import ipdb
import numpy as np
curr_path = osp.dirname(osp.abspath(__file__))
model_dir = osp.join(curr_path, '..', 'models')
if not osp.exists(model_dir):
print('Fix path to models/')
ipdb.set_trace()
SMPL_MODEL_PATH = osp.join(model_dir,
'neutral_smpl_with_cocoplustoesankles_reg.pkl')
SMPL_FACE_PATH = osp.join(curr_path, '../src/tf_smpl', 'smpl_faces.npy')
# Default pred-trained model path for the demo.
PRETRAINED_MODEL = osp.join(model_dir, 'hmr_noS5.ckpt-642561')
# Pre-trained HMMR model:
HMMR_MODEL = osp.join(model_dir, 'hmmr_model.ckpt-1119816')
flags.DEFINE_string('smpl_model_path', SMPL_MODEL_PATH,
'path to the neutral smpl model')
flags.DEFINE_string('smpl_face_path', SMPL_FACE_PATH,
'path to smpl mesh faces (for easy rendering)')
flags.DEFINE_string('load_path', None, 'path to trained model dir')
flags.DEFINE_integer('batch_size', 8, 'Size of mini-batch.')
flags.DEFINE_integer('T', 20, 'Length of sequence.')
flags.DEFINE_integer('num_kps', 25, 'Number of keypoints.')
flags.DEFINE_integer('num_conv_layers', 3, '# of layers for convolutional')
flags.DEFINE_list('delta_t_values', ['-5', '5'], 'Amount of time to jump by.')
# For training.
flags.DEFINE_string('data_dir', None, 'Where tfrecords are saved')
flags.DEFINE_string('log_dir', 'logs', 'Where to save training models')
flags.DEFINE_string('model_dir', None,
'Where model will be saved -- filled automatically')
flags.DEFINE_list('datasets', ['h36m', 'penn_action', 'insta_variety'],
'datasets to use for training')
flags.DEFINE_list('mocap_datasets', ['CMU', 'H3.6', 'jointLim'],
'datasets to use for adversarial prior training')
flags.DEFINE_list('pretrained_model_path', [PRETRAINED_MODEL],
'if not None, fine-tunes from this ckpt')
flags.DEFINE_string('image_encoder_model_type', 'resnet',
'Specifies which image encoder to use')
flags.DEFINE_string('temporal_encoder_type', 'AZ_FC2GN',
'Specifies which network to use for temporal encoding')
flags.DEFINE_string('hallucinator_model_type', 'fc2_res',
'Specifies network to convert phi to moviestrip')
flags.DEFINE_integer('img_size', 224,
'Input image size to the network after preprocessing')
flags.DEFINE_string('data_format', 'NHWC', 'Data format')
flags.DEFINE_integer('num_stage', 3, '# of times to iterate IEF regressor')
flags.DEFINE_integer('max_iteration', 5000000, '# of max iteration to train')
flags.DEFINE_integer('log_img_count', 10,
'Number of images in sequence to visualize')
flags.DEFINE_integer('log_img_step', 5000,
'How often to visualize img during training')
flags.DEFINE_integer('log_vid_step', 100000,
'How often to visualize video during training')
# Loss weights.
flags.DEFINE_float('e_lw_smpl', 60, 'Weight on loss_e_smpl')
flags.DEFINE_float('e_lw_joints', 60, 'Weight on loss_e_joints')
flags.DEFINE_float('e_lw_const', 1, 'Weight on loss_e_const')
flags.DEFINE_float('e_lw_kp', 60, 'Weight on loss_e_kp')
flags.DEFINE_float('e_lw_pose', 1, 'Weight on loss_e_pose')
flags.DEFINE_float('e_lw_shape', 1, 'Weight on loss_e_shape')
flags.DEFINE_float('d_lw_pose', 1, 'Weight on loss_d_pose')
# Hyper parameters:
flags.DEFINE_float('e_lr', 0.00001, 'Encoder learning rate')
flags.DEFINE_float('d_lr', 0.0001, 'Adversarial prior learning rate')
flags.DEFINE_float('e_wd', 0.0001, 'Encoder weight decay')
flags.DEFINE_float('d_wd', 0.0001, 'Adversarial prior weight decay')
# Training setup.
flags.DEFINE_boolean('use_3d_label', True, 'Uses 3D labels if on.')
flags.DEFINE_boolean('freeze_phi', True, 'Fixes ResNet weights.')
flags.DEFINE_boolean(
'use_hmr_ief_init', True,
'If True, uses HMR regressor as initialization to HMMR regressor.'
)
flags.DEFINE_boolean('predict_delta', True,
'If True, predicts future and past as well')
flags.DEFINE_boolean('precomputed_phi', True,
'If True, uses tfrecord with precomputed phi')
flags.DEFINE_boolean(
'use_delta_from_pred', True,
'If True, initializes delta regressor from current prediction.'
)
flags.DEFINE_bool('use_hmr_only', False, 'If true, uses HMR model')
# Equal split
flags.DEFINE_bool('split_balanced', True, 'default true, the queue is forced '
'so its half 3D data (H36M) and half 2D in-the-wild data.')
# Hallucinating
flags.DEFINE_bool('do_hallucinate', False, 'if true trained hallucinator')
flags.DEFINE_bool('do_hallucinate_preds', False,
'if True, compute losses on predictions from hallucinator')
flags.DEFINE_float('e_lw_hallucinate', 1,
'Weight on ||pred movie_strip - movie_strip||')
# Data augmentation
flags.DEFINE_integer('trans_max', 20, 'Max value of translation jitter')
flags.DEFINE_integer('delta_trans_max', 20,
'Max consecutive translation jitter')
flags.DEFINE_float('scale_max', 0.3, 'Max value of scale jitter (power of 2)')
flags.DEFINE_float('delta_scale_max', 0.3, 'Max consecutive scale jitter')
flags.DEFINE_float('rotate_max', 0, 'Max value to rotate jitter')
flags.DEFINE_float('delta_rotate_max', 5, 'Max consecutive rotate jitter')
# Random seed
flags.DEFINE_integer('seed', 1, 'Graph-level random seed')
flags.DEFINE_bool('mosh_ignore', False, 'if true sets has_gt (smpl) off ')
def get_config():
config = flags.FLAGS
config(sys.argv)
# Actually the rest of the code really assumes NHWC
if config.data_format == 'NCHW':
print('dont use NCHW')
exit(1)
return config
# ----- For training ----- #
def prepare_dirs(config, prefix=[]):
# Continue training from a load_path
if config.load_path:
if not osp.exists(config.load_path):
print("load_path: %s doesnt exist..!!!" % config.load_path)
import ipdb
ipdb.set_trace()
print('continuing from %s!' % config.load_path)
# Check for changed training parameter:
# Load prev config param path
param_path = glob(osp.join(config.load_path, '*.json'))[0]
with open(param_path, 'r') as fp:
prev_config = json.load(fp)
dict_here = config.__dict__
ignore_keys = ['load_path', 'log_img_step', 'pretrained_model_path']
diff_keys = [
k for k in dict_here
if k not in ignore_keys and k in prev_config.keys()
and prev_config[k] != dict_here[k]
]
for k in diff_keys:
if k == 'load_path' or k == 'log_img_step':
continue
if prev_config[k] is None and dict_here[k] is not None:
print("%s is different!! before: None after: %g" %
(k, dict_here[k]))
elif prev_config[k] is not None and dict_here[k] is None:
print("%s is different!! before: %g after: None" %
(k, prev_config[k]))
else:
print("%s is different!! before: " % k)
print(prev_config[k])
print("now:")
print(dict_here[k])
if len(diff_keys) > 0:
print("really continue??")
import ipdb
ipdb.set_trace()
config.model_dir = config.load_path
else:
postfix = []
# If config.dataset is not the same as default, add that to name.
default_dataset = [
'lsp', 'lsp_ext', 'mpii', 'h36m', 'coco', 'mpi_inf_3dhp'
]
default_static_datasets = sorted(['lsp', 'coco'])
default_mocap = ['CMU', 'H3.6', 'jointLim']
if sorted(config.datasets) != sorted(default_dataset):
has_all_default = np.all(
[name in config.datasets for name in default_dataset])
if has_all_default:
new_names = [
name for name in sorted(config.datasets)
if name not in default_dataset
]
postfix.append('default+' + '-'.join(sorted(new_names)))
else:
postfix.append('-'.join(sorted(config.datasets)))
if sorted(config.mocap_datasets) != sorted(default_mocap):
postfix.append('-'.join(config.mocap_datasets))
if config.e_lr != 1e-5:
postfix.append('Elr{:g}'.format(config.e_lr))
# Weights:
if config.e_lw_smpl != 60:
postfix.append('lwsmpl-{}'.format(config.e_lw_smpl))
if config.e_lw_joints != 60:
postfix.append('lw3djoints-{}'.format(config.e_lw_joints))
if config.e_lw_kp != 60:
postfix.append('lw-kp{:g}'.format(config.e_lw_kp))
if config.e_lw_shape != 1:
postfix.append('lw-shape{:g}'.format(config.e_lw_shape))
if config.e_lw_pose != 1:
postfix.append('lw-pose{:g}'.format(config.e_lw_pose))
if config.e_lw_hallucinate != 1:
postfix.append('lw-hall{:g}'.format(config.e_lw_pose))
if config.d_lr != 1e-4:
postfix.append('Dlr{:g}' % config.d_lr)
postfix.append('const{}'.format(config.e_lw_const))
postfix.append('l2-shape-{}'.format(config.e_lw_shape))
if config.use_hmr_ief_init:
if config.temporal_encoder_type != 'AZ_FC2GN':
print(
'HMR ief init is only implemented for AZ_FC2GN, implement'
' it and update this warning!')
import ipdb
ipdb.set_trace()
postfix.append('hmr-ief-init')
# Model
if not config.use_hmr_only:
prefix.append(config.temporal_encoder_type)
if config.temporal_encoder_type[0:5] == 'AZ_FC':
prefix.append('{}'.format(config.num_conv_layers))
else:
prefix.append('HMR')
if config.predict_delta:
pref = 'pred-delta'
if config.use_delta_from_pred:
pref += '-from-pred'
pref += '_'.join(config.delta_t_values)
prefix.append(pref)
if config.do_hallucinate:
assert config.predict_delta
pref = 'hal'
if config.do_hallucinate_preds:
# Prob. depreciated
pref += '-preds'
prefix.append(pref)
if config.num_stage != 3:
prefix += ["ief-stages%d" % config.num_stage]
prefix.append('B{}'.format(config.batch_size))
prefix.append('T{}'.format(config.T))
if config.precomputed_phi:
prefix.append('precomputed-phi')
elif config.freeze_phi:
prefix.append('freeze-phi')
# Add pretrained (dont worry about load_path,
# bc if it was specified id never get here):
if config.pretrained_model_path is not None:
if 'resnet_v2_50' in config.pretrained_model_path:
postfix.append('from_resnet')
elif 'hmr_noS5.ckpt-642561' == osp.basename(
config.pretrained_model_path[0]):
postfix.append('from_{}'.format(
osp.basename(config.pretrained_model_path[0])))
else:
# We are finetuning from HMR/HMMR! include date.
date = osp.basename(
osp.dirname(config.pretrained_model_path[0]))[-10:]
model_ckpt = osp.basename(config.pretrained_model_path[0])
postfix.append('from_{}_{}'.format(date, model_ckpt))
# Data:
# Jitter amount:
if config.trans_max != 20 or config.delta_trans_max != 20:
postfix.append('transmax-{}:{}'.format(config.trans_max,
config.delta_trans_max))
if config.scale_max != 0.3 or config.delta_scale_max != 0.3:
postfix.append('scmax-{}:{}'.format(config.scale_max,
config.delta_scale_max))
if not config.split_balanced:
postfix.append('no-split-balance')
if config.mosh_ignore:
postfix.append('mosh_ignore')
if not postfix:
postfix.append('')
prefix = '_'.join(prefix)
postfix = '_'.join(postfix)
time_str = datetime.now().strftime("%b%d_%H%M")
save_name = "%s_%s_%s" % (prefix, postfix, time_str)
config.model_dir = osp.join(config.log_dir, save_name)
for path in [config.log_dir, config.model_dir]:
if not osp.exists(path):
print('making %s' % path)
makedirs(path)
def save_config(config):
param_path = osp.join(config.model_dir, "params.json")
print("[*] MODEL dir: %s" % config.model_dir)
print("[*] PARAM path: %s" % param_path)
config_dict = {}
for k in dir(config):
config_dict[k] = config.__getattr__(k)
with open(param_path, 'w') as fp:
json.dump(config_dict, fp, indent=4, sort_keys=True)