forked from GoogleCloudPlatform/ai-on-gke
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cloudbuild.yaml
402 lines (351 loc) · 15.2 KB
/
cloudbuild.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
steps:
- id: 'validate platform'
name: 'gcr.io/$PROJECT_ID/terraform'
script: |
terraform init -no-color
terraform validate -no-color
dir: 'infrastructure/'
waitFor: ['-']
- id: 'validate ray'
name: 'gcr.io/$PROJECT_ID/terraform'
script: |
terraform init -no-color
terraform validate -no-color
dir: 'applications/ray/'
waitFor: ['validate platform']
- id: 'validate jupyterhub'
name: 'gcr.io/$PROJECT_ID/terraform'
script: |
terraform init -no-color
terraform validate -no-color
dir: 'applications/jupyter/'
waitFor: ['validate platform']
- id: 'validate rag'
name: 'gcr.io/$PROJECT_ID/terraform'
script: |
terraform init -no-color
terraform validate -no-color
dir: 'applications/rag/'
waitFor: ['validate platform']
# Create cluster to test ray, jupyterhub, rag
- id: 'create gke cluster'
name: 'gcr.io/$PROJECT_ID/terraform'
env:
- "KUBE_LOAD_CONFIG_FILE=false"
entrypoint: 'sh'
args:
- '-c'
- |
set -e
terraform apply \
-var-file=tfvars_tests/standard-gke-public.platform.tfvars \
-var=project_id=$PROJECT_ID \
-var=network_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-$_AUTOPILOT_CLUSTER \
-var=subnetwork_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-$_AUTOPILOT_CLUSTER \
-var=subnetwork_region=$_REGION \
-var=cluster_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-cluster \
-var=autopilot_cluster=$_AUTOPILOT_CLUSTER \
-var=cluster_location=$_REGION \
-var='cpu_pools=[{initial_node_count=2,name="cpu-pool",machine_type="n1-standard-16",autoscaling=true,min_count=1,max_count=3,disk_size_gb=100,disk_type="pd-standard",}]' \
-var='gpu_pools=[{initial_node_count=2,name="gpu-pool",machine_type="g2-standard-24",autoscaling=true,min_count=1,max_count=3,disk_size_gb=100,disk_type="pd-balanced",accelerator_count=2,accelerator_type="nvidia-l4",gpu_driver_version="DEFAULT",}]' \
-auto-approve -no-color
echo "pass" > /workspace/gke_cluster_result.txt
dir: 'infrastructure/'
allowFailure: true
waitFor: ['validate platform', 'validate ray', 'validate jupyterhub', validate rag]
- id: 'test ray cluster'
name: 'gcr.io/$PROJECT_ID/terraform'
entrypoint: 'sh'
args:
- '-c'
- |
set -e
# Get kube config
gcloud container clusters get-credentials \
ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-cluster \
--location $_REGION \
--project $PROJECT_ID
cd /workspace/applications/ray/
terraform apply \
-var-file=workloads.tfvars \
-var=project_id=$PROJECT_ID \
-var=cluster_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-cluster \
-var=cluster_location=$_REGION \
-var=kubernetes_namespace=ml-$SHORT_SHA-$_BUILD_ID-ray \
-var=workload_identity_service_account=ray-sa-$SHORT_SHA-$_BUILD_ID \
-var=gcs_bucket=gke-aieco-ray-$SHORT_SHA-$_BUILD_ID \
-var=enable_gpu=true \
-auto-approve -no-color
echo "pass" > /workspace/user_result.txt
chmod +x /workspace/scripts/ci/wait_for_pods.sh
/workspace/scripts/ci/wait_for_pods.sh ml-$SHORT_SHA-$_BUILD_ID-ray 3000
kubectl wait --all pods -n ml-$SHORT_SHA-$_BUILD_ID-ray --for=condition=Ready --timeout=1200s
# Ray head's readinessProbe is not probing the head service today. Therefore the wait for ready above is not reliable.
sleep 60s
kubectl port-forward -n ml-$SHORT_SHA-$_BUILD_ID-ray service/ray-cluster-kuberay-head-svc 8265:8265 &
# Wait port-forwarding to take its place
sleep 10s
ray job submit \
--address=http://127.0.0.1:8265 -- python -c "import ray; ray.init(); print(ray.cluster_resources())"
echo "pass" > /workspace/ray_result.txt
allowFailure: true
waitFor: ['create gke cluster']
- id: 'cleanup ray cluster'
name: 'gcr.io/$PROJECT_ID/terraform'
entrypoint: 'bash'
args:
- '-c'
- |
set -e
cd /workspace/applications/ray/
terraform destroy \
-var-file=workloads.tfvars \
-var=project_id=$PROJECT_ID \
-var=cluster_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-cluster \
-var=cluster_location=$_REGION \
-var=kubernetes_namespace=ml-$SHORT_SHA-$_BUILD_ID-ray \
-var=workload_identity_service_account=ray-sa-$SHORT_SHA-$_BUILD_ID \
-var=gcs_bucket=gke-aieco-ray-$SHORT_SHA-$_BUILD_ID \
-var=enable_gpu=true \
-auto-approve -no-color
allowFailure: true
waitFor: ['test ray cluster']
- id: 'test jupyterhub'
name: 'gcr.io/$PROJECT_ID/terraform'
entrypoint: 'bash'
args:
- '-c'
- |
set -e
cd /workspace/modules/jupyter/tests
python3 change_jupyter_config.py $_AUTOPILOT_CLUSTER
cd /workspace/applications/jupyter
terraform apply \
-var-file=workloads-without-iap.example.tfvars \
-var=project_id=$PROJECT_ID \
-var=cluster_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-cluster \
-var=cluster_location=$_REGION \
-var=kubernetes_namespace=ml-$SHORT_SHA-$_BUILD_ID-jupyter \
-var=workload_identity_service_account=jupyter-sa-$SHORT_SHA-$_BUILD_ID \
-var=gcs_bucket=gke-aieco-jupyter-$SHORT_SHA-$_BUILD_ID \
-auto-approve -no-color
echo "pass" > /workspace/jupyterhub_tf_result.txt
kubectl wait --for=condition=Ready pods -n ml-$SHORT_SHA-$_BUILD_ID-jupyter -l 'component!=continuous-image-puller' --timeout=1800s
kubectl get services -n ml-$SHORT_SHA-$_BUILD_ID-jupyter
kubectl port-forward -n ml-$SHORT_SHA-$_BUILD_ID-jupyter service/proxy-public 9442:80 &
# Wait port-forwarding to take its place
sleep 5s
cd /workspace/modules/jupyter/tests
python3 test_hub.py "127.0.0.1:9442" $_AUTOPILOT_CLUSTER
echo "pass" > /workspace/jupyterhub_test_result.txt
allowFailure: true
waitFor: ['create gke cluster']
- id: 'cleanup jupyterhub'
name: 'gcr.io/$PROJECT_ID/terraform'
entrypoint: 'bash'
args:
- '-c'
- |
set -e
cd /workspace/applications/jupyter/
terraform destroy \
-var-file=workloads-without-iap.example.tfvars \
-var=project_id=$PROJECT_ID \
-var=cluster_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-cluster \
-var=cluster_location=$_REGION \
-var=kubernetes_namespace=ml-$SHORT_SHA-$_BUILD_ID-jupyter \
-var=workload_identity_service_account=jupyter-sa-$SHORT_SHA-$_BUILD_ID \
-var=gcs_bucket=gke-aieco-jupyter-$SHORT_SHA-$_BUILD_ID \
-auto-approve -no-color
allowFailure: true
waitFor: ['test jupyterhub']
- id: 'test rag'
name: 'gcr.io/$PROJECT_ID/terraform'
entrypoint: 'sh'
secretEnv: ['KAGGLE_USERNAME', 'KAGGLE_KEY']
args:
- '-c'
- |
set -e
# Get kube config
gcloud container clusters get-credentials \
ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-cluster \
--location $_REGION \
--project $PROJECT_ID
cd /workspace/modules/jupyter/tests
python3 change_jupyter_config.py $_AUTOPILOT_CLUSTER
cd /workspace/applications/rag/
terraform apply \
-var-file=workloads.tfvars \
-var=network_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-$_AUTOPILOT_CLUSTER \
-var=create_cluster=false \
-var=jupyter_add_auth=false \
-var=frontend_add_auth=false \
-var=project_id=$PROJECT_ID \
-var=cluster_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-cluster \
-var=cluster_location=$_REGION \
-var=kubernetes_namespace=rag-$SHORT_SHA-$_BUILD_ID \
-var=gcs_bucket=gke-aieco-rag-$SHORT_SHA-$_BUILD_ID \
-var=ray_service_account=ray-sa-4-rag-$SHORT_SHA-$_BUILD_ID \
-var=rag_service_account=rag-sa-4-rag-$SHORT_SHA-$_BUILD_ID \
-var=jupyter_service_account=jupyter-sa-4-rag-$SHORT_SHA-$_BUILD_ID \
-var=cloudsql_instance=pgvector-instance-$SHORT_SHA-$_BUILD_ID \
-auto-approve -no-color
echo "pass" > /workspace/rag_tf_result.txt
# Validate Ray: Make sure pods are running
kubectl wait --for=condition=Ready pods -n rag-$SHORT_SHA-$_BUILD_ID -l 'component!=continuous-image-puller' --timeout=1200s
kubectl port-forward -n rag-$SHORT_SHA-$_BUILD_ID service/ray-cluster-kuberay-head-svc 8262:8265 &
# Wait port-forwarding to take its place
sleep 5s
# Validate Ray: Check dashboard
ray job submit --working-dir ./tests \
--address=http://127.0.0.1:8262 -- python -c "import ray; ray.init(); print(ray.cluster_resources())"
echo "pass" > /workspace/rag_ray_dashboard_result.txt
# Validate JupyterHub: Get hub url
kubectl get services -n rag-$SHORT_SHA-$_BUILD_ID
kubectl port-forward -n rag-$SHORT_SHA-$_BUILD_ID service/proxy-public 9443:80 &
# Wait port-forwarding to take its place
sleep 5s
# Validate JupyterHub: Test Hub
cd /workspace/modules/jupyter/tests
python3 test_hub.py "127.0.0.1:9443" $_AUTOPILOT_CLUSTER
echo "pass" > /workspace/rag_jupyterhub_test_result.txt
# Validate RAG: Test rag frontend
kubectl port-forward -n rag-$SHORT_SHA-$_BUILD_ID service/rag-frontend 8081:8080 &
# Wait port-forwarding to take its place
sleep 5s
cd /workspace/applications/rag/tests
python3 test_frontend.py "127.0.0.1:8081"
echo "pass" > /workspace/rag_frontend_result.txt
cd /workspace/
sed -i "s/<username>/$$KAGGLE_USERNAME/g" ./applications/rag/example_notebooks/rag-kaggle-ray-sql-interactive.ipynb
sed -i "s/<token>/$$KAGGLE_KEY/g" ./applications/rag/example_notebooks/rag-kaggle-ray-sql-interactive.ipynb
gsutil cp ./applications/rag/example_notebooks/rag-kaggle-ray-sql-interactive.ipynb gs://gke-aieco-rag-$SHORT_SHA-$_BUILD_ID/
kubectl exec -it -n rag-$SHORT_SHA-$_BUILD_ID $(kubectl get pod -l app=jupyterhub,component=hub -n rag-$SHORT_SHA-$_BUILD_ID -o jsonpath="{.items[0].metadata.name}") -- jupyterhub token admin --log-level=CRITICAL | xargs python3 ./applications/rag/notebook_starter.py
# Wait for jupyterhub to trigger notebook pod startup
sleep 5s
kubectl wait --for=condition=Ready pod/jupyter-admin -n rag-$SHORT_SHA-$_BUILD_ID --timeout=500s
kubectl exec -it -n rag-$SHORT_SHA-$_BUILD_ID jupyter-admin -c notebook -- jupyter nbconvert --to script /data/rag-kaggle-ray-sql-interactive.ipynb
kubectl exec -it -n rag-$SHORT_SHA-$_BUILD_ID jupyter-admin -c notebook -- ipython /data/rag-kaggle-ray-sql-interactive.py
python3 ./applications/rag/tests/test_rag.py "http://127.0.0.1:8081/prompt"
echo "pass" > /workspace/rag_prompt_result.txt
allowFailure: true
waitFor: ['create gke cluster']
- id: 'cleanup rag'
name: 'gcr.io/$PROJECT_ID/terraform'
entrypoint: 'bash'
args:
- '-c'
- |
set -e
cd /workspace/applications/rag/
terraform destroy \
-var-file=workloads.tfvars \
-var=network_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-$_AUTOPILOT_CLUSTER \
-var=create_cluster=false \
-var=jupyter_add_auth=false \
-var=frontend_add_auth=false \
-var=project_id=$PROJECT_ID \
-var=cluster_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-cluster \
-var=cluster_location=$_REGION \
-var=kubernetes_namespace=rag-$SHORT_SHA-$_BUILD_ID \
-var=gcs_bucket=gke-aieco-rag-$SHORT_SHA-$_BUILD_ID \
-var=ray_service_account=ray-sa-$SHORT_SHA-$_BUILD_ID \
-var=rag_service_account=rag-sa-$SHORT_SHA-$_BUILD_ID \
-var=jupyter_service_account=jupyter-sa-$SHORT_SHA-$_BUILD_ID \
-var=cloudsql_instance=pgvector-instance-$SHORT_SHA-$_BUILD_ID \
-auto-approve -no-color
allowFailure: true
waitFor: ['test rag']
- id: 'cleanup gke cluster'
name: 'gcr.io/$PROJECT_ID/terraform'
entrypoint: 'bash'
args:
- '-c'
- |
set -e
cd /workspace/infrastructure
terraform destroy -var-file=tfvars_tests/standard-gke-public.platform.tfvars -var=project_id=$PROJECT_ID \
-var=cluster_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-cluster \
-var=network_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-$_AUTOPILOT_CLUSTER \
-var=subnetwork_name=ml-$SHORT_SHA-$_PR_NUMBER-$_BUILD_ID-$_AUTOPILOT_CLUSTER \
-var=autopilot_cluster=$_AUTOPILOT_CLUSTER \
-var=cluster_location=$_REGION -auto-approve -no-color
allowFailure: true
waitFor: ['cleanup rag', 'cleanup jupyterhub', 'cleanup ray cluster']
- id: 'check result'
name: 'gcr.io/$PROJECT_ID/terraform'
entrypoint: 'bash'
args:
- '-c'
- |
if [[ $(cat /workspace/gke_cluster_result.txt) != "pass" ]]; then
echo "gke cluster creation failed"
exit 1
fi
if [[ $(cat /workspace/ray_result.txt) != "pass" ]]; then
echo "ray API run failed"
exit 1
fi
if [[ $(cat /workspace/user_result.txt) != "pass" ]]; then
echo "ray cluster failed"
exit 1
fi
if [[ $(cat /workspace/jupyterhub_tf_result.txt) != "pass" ]]; then
echo "jupyterhub tf failed"
exit 1
fi
if [[ $(cat /workspace/jupyterhub_test_result.txt) != "pass" ]]; then
echo "jupyterhub test failed"
exit 1
fi
if [[ $(cat /workspace/rag_tf_result.txt) != "pass" ]]; then
echo "rag tf failed"
exit 1
fi
if [[ $(cat /workspace/rag_ray_dashboard_result.txt) != "pass" ]]; then
echo "rag ray dashboard test failed"
exit 1
fi
if [[ $(cat /workspace/rag_jupyterhub_test_result.txt) != "pass" ]]; then
echo "rag jupyterhub test failed"
exit 1
fi
if [[ $(cat /workspace/rag_frontend_result.txt) != "pass" ]]; then
echo "rag frontend test failed"
exit 1
fi
if [[ $(cat /workspace/rag_prompt_result.txt) != "pass" ]]; then
echo "rag prompt test failed"
exit 1
fi
waitFor: ['cleanup gke cluster']
substitutions:
_REGION: us-east4
_USER_NAME: github
_AUTOPILOT_CLUSTER: "false"
_BUILD_ID: ${BUILD_ID:0:8}
logsBucket: gs://ai-on-gke-build-logs
options:
substitutionOption: 'ALLOW_LOOSE'
machineType: 'E2_HIGHCPU_8'
timeout: 5400s
availableSecrets:
secretManager:
- versionName: projects/gke-ai-eco-dev/secrets/cloudbuild-kaggle-username/versions/latest
env: 'KAGGLE_USERNAME'
- versionName: projects/gke-ai-eco-dev/secrets/cloudbuild-kaggle-key/versions/latest
env: 'KAGGLE_KEY'