-
Notifications
You must be signed in to change notification settings - Fork 1
/
ripyl_demo.py
1518 lines (1123 loc) · 52.3 KB
/
ripyl_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
# -*- coding: utf-8 -*-
'''Ripyl protocol decode library
Ripyl demo script
'''
# Copyright © 2013 Kevin Thibedeau
# This file is part of Ripyl.
# Ripyl is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
# Ripyl is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
# You should have received a copy of the GNU Lesser General Public
# License along with Ripyl. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function, division
import sys
from optparse import OptionParser
import random
from collections import OrderedDict
import ripyl
import ripyl.protocol.infrared as ir
import ripyl.sigproc as sigp
import ripyl.streaming as stream
import ripyl.util.eng as eng
import test.test_support as tsup
from ripyl.sigproc import min_rise_time
from ripyl.util.color import note, success, error
try:
import matplotlib
matplotlib_exists = True
except ImportError:
matplotlib_exists = False
if matplotlib_exists:
import ripyl.util.plot as rplot
def main():
'''Entry point for script'''
protocols = ('uart', 'ethernet', 'i2c', 'lm73', 'spi', 'i2s', 'usb', 'usb-diff', 'hsic', 'ps2', \
'kline', 'rc5', 'rc6', 'nec', 'sirc', 'can', 'lin', 'j1850', 'j1850-pwm')
usage = '''%prog [-p PROTOCOL] [-n] [-m MSG]
Supported protocols:
{}
'''.format(', '.join(protocols))
parser = OptionParser(usage=usage)
parser.add_option('-p', '--protocol', dest='protocol', default='uart', help='Specify protocol to use')
parser.add_option('-n', '--no-plot', dest='no_plot', action='store_true', default=False, help='Disable matplotlib plotting')
parser.add_option('-m', '--msg', dest='msg', default='Hello, world!', help='Input message')
parser.add_option('-s', '--snr', dest='snr_db', default=40.0, type=float, help='SNR in dB')
parser.add_option('-b', '--baud', dest='baud', type=float, help='Baud rate')
parser.add_option('-o', '--save-plot', dest='save_file', help='Save plot to image file')
parser.add_option('-d', '--dropout', dest='dropout', help='Dropout signal from "start,end[,level]"')
parser.add_option('-t', '--title', dest='title', help='Title for plot')
parser.add_option('-f', '--figsize', dest='figsize', help='Figure size (w,h) in inches')
parser.add_option('-x', '--x-range', dest='xrange', help='X-axis range (start,end)')
parser.add_option('-l', '--label-names', dest='show_names', action='store_true', default=False, help='Show field names for text labels')
parser.add_option('-a', '--no-annotation', dest='no_annotation', action='store_true', default=False, help='Disable plot annotation')
options, args = parser.parse_args()
if not matplotlib_exists:
options.no_plot = True
# process dropout parameters
if options.dropout is not None:
do_opts = [float(n) for n in options.dropout.split(',')]
if len(do_opts) == 3:
options.dropout_level = do_opts[2]
do_opts = do_opts[0:2]
else:
options.dropout_level = 0.0
options.dropout = do_opts
if options.figsize is not None:
options.figsize = [float(x) for x in options.figsize.split(',')]
if options.xrange is not None:
options.xrange = [float(x) for x in options.xrange.split(',')]
options.protocol = options.protocol.lower()
print('** Ripyl demo **\n\n')
if options.protocol in protocols:
func = 'demo_' + options.protocol
if options.protocol in ('usb-diff', 'hsic'):
func = 'demo_usb'
if options.protocol == 'j1850-pwm':
func = 'demo_j1850_pwm'
globals()[func](options) # Call the protocol demo routine
else:
print('Unrecognized protocol: "{}"'.format(options.protocol))
sys.exit(1)
def demo_usb(options):
import ripyl.protocol.usb as usb
print('USB protocol\n')
# USB params
bus_speed = usb.USBSpeed.HighSpeed
clock_freq = 1.0 / usb.USBClockPeriod[bus_speed]
# Sampled waveform params
sample_rate = clock_freq * 10.0
rise_time = min_rise_time(sample_rate) * 8.0 # 8x min. rise time
noise_snr = options.snr_db
message = options.msg
byte_msg = bytearray(message.encode('latin1')) # Get raw bytes as integers
packets = [usb.USBDataPacket(usb.USBPID.Data0, byte_msg, speed=bus_speed)]
#packets.append(usb.USBSplitPacket(usb.USBPID.SPLIT, 0x09, 1, 0x0F, 1, 1, 1, bus_speed))
#packets = [usb.USBSplitPacket(usb.USBPID.SPLIT, 0x09, 1, 0x0F, 1, 1, 1, bus_speed)]
#packets = [usb.USBHandshakePacket(usb.USBPID.NYET, bus_speed, 0.0)]
#packets = [usb.USBEXTPacket(usb.USBPID.EXT, 0x16, 0xa, 0x2, 0x31f, bus_speed)]
#packets.append(usb.USBTokenPacket(usb.USBPID.TokenOut, 0x6c, 0x2, bus_speed))
#packets.append(usb.USBSOFPacket(usb.USBPID.SOF, 0x12, bus_speed))
#packets = [usb.USBTokenPacket(usb.USBPID.TokenOut, 0x07, 0x01, bus_speed)]
#bus_speed = usb.USBSpeed.HighSpeed
#packets = [usb.USBSOFPacket(usb.USBPID.SOF, 0x12, bus_speed), \
# usb.USBTokenPacket(usb.USBPID.TokenOut, 0x6c, 0x2, bus_speed), \
# usb.USBHandshakePacket(usb.USBPID.ACK, bus_speed)]
#packets = [usb.USBTokenPacket(usb.USBPID.TokenOut, 0x07, 0x01, bus_speed, delay=0.8e-7),
# usb.USBDataPacket(usb.USBPID.Data1, bytearray('Ripyl supports HSIC'), bus_speed),
# usb.USBHandshakePacket(usb.USBPID.ACK, bus_speed)]
#packets = [usb.USBDataPacket(usb.USBPID.Data0, bytearray('Full'), usb.USBSpeed.FullSpeed),
# usb.USBHandshakePacket(usb.USBPID.PRE, usb.USBSpeed.FullSpeed),
# usb.USBDataPacket(usb.USBPID.Data1, bytearray('Low'), usb.USBSpeed.LowSpeed)]
#packets[-1].swap_jk = True
if options.protocol == 'usb':
# Synthesize the waveform edge stream
# This can be fed directly into usb_decode() if an analog waveform is not needed
dp, dm = usb.usb_synth(packets, idle_end=0.2e-7)
# Convert to a sample stream with band-limited edges and noise
cln_dp_it = sigp.synth_wave(dp, sample_rate, rise_time)
cln_dm_it = sigp.synth_wave(dm, sample_rate, rise_time)
gain = 0.4 if bus_speed == usb.USBSpeed.HighSpeed else 3.3
nsy_dp_it = sigp.amplify(sigp.noisify(cln_dp_it, snr_db=noise_snr), gain=gain, offset=0.0)
nsy_dm_it = sigp.amplify(sigp.noisify(cln_dm_it, snr_db=noise_snr), gain=gain, offset=0.0)
# Dropout needs to flip both D+ and D- to be useful for error injection
# if options.dropout is not None:
# do_start, do_end = [float(n) for n in options.dropout.split(',')]
# nsy_dm_it = sigp.dropout(nsy_dm_it, do_start, do_end)
# Capture the samples from the iterator
nsy_dp = list(nsy_dp_it)
nsy_dm = list(nsy_dm_it)
# Decode the samples
decode_success = True
records = []
try:
records_it = usb.usb_decode(iter(nsy_dp), iter(nsy_dm))
records = list(records_it)
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
elif options.protocol == 'usb-diff': # differential usb
# Synthesize the waveform edge stream
# This can be fed directly into usb_diff_decode() if an analog waveform is not needed
diff_d = usb.usb_diff_synth(packets, idle_end=0.2e-7)
# Convert to a sample stream with band-limited edges and noise
cln_dd_it = sigp.synth_wave(diff_d, sample_rate, rise_time)
nsy_dd_it = sigp.amplify(sigp.noisify(cln_dd_it, snr_db=noise_snr), gain=3.3, offset=0.0)
# Dropout needs to flip both D+ and D- to be useful for error injection
# if options.dropout is not None:
# do_start, do_end = [float(n) for n in options.dropout.split(',')]
# nsy_dm_it = sigp.dropout(nsy_dm_it, do_start, do_end)
# Capture the samples from the iterator
nsy_dd = list(nsy_dd_it)
#samples, start_time, period = stream.extract_all_samples(nsy_dd)
#samples = list(samples)
#samples = samples[100:]
#nsy_dd = list(stream.samples_to_sample_stream(samples, period, start_time))
# Decode the samples
decode_success = True
records = []
try:
records_it = usb.usb_diff_decode(iter(nsy_dd))
records = list(records_it)
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
else: # HSIC
# Force all packets to HighSpeed
# Synthesize the waveform edge stream
# This can be fed directly into usb_hsic_decode() if an analog waveform is not needed
strobe, data = usb.usb_hsic_synth(packets, idle_end=0.2e-7)
# Convert to a sample stream with band-limited edges and noise
cln_stb_it = sigp.synth_wave(strobe, sample_rate, rise_time)
cln_d_it = sigp.synth_wave(data, sample_rate, rise_time)
cln_stb = list(cln_stb_it)
cln_stb_it = iter(cln_stb)
gain = 1.2
nsy_stb_it = sigp.amplify(sigp.noisify(cln_stb_it, snr_db=noise_snr), gain=gain, offset=0.0)
nsy_d_it = sigp.amplify(sigp.noisify(cln_d_it, snr_db=noise_snr), gain=gain, offset=0.0)
# Dropout needs to flip both D+ and D- to be useful for error injection
# if options.dropout is not None:
# do_start, do_end = [float(n) for n in options.dropout.split(',')]
# nsy_dm_it = sigp.dropout(nsy_dm_it, do_start, do_end)
# Capture the samples from the iterator
nsy_stb = list(nsy_stb_it)
nsy_d = list(nsy_d_it)
# Decode the samples
decode_success = True
records = []
try:
records_it = usb.usb_hsic_decode(iter(nsy_stb), iter(nsy_d))
records = list(records_it)
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
protocol_params = {
'bus speed': usb.USBSpeed(bus_speed),
'clock frequency': eng.eng_si(clock_freq, 'Hz')
}
wave_params = {
'sample rate': eng.eng_si(sample_rate, 'Hz'),
'rise time': eng.eng_si(rise_time, 's', 1),
'SNR': str(options.snr_db) + ' dB'
}
plot_params = {
'default_title': 'USB Simulation',
'label_format': stream.AnnotationFormat.Text
}
report_results(records, packets, protocol_params, wave_params, decode_success, lambda d, o: (d.data, o))
if options.protocol == 'usb':
channels = OrderedDict([('D+ (V)', nsy_dp), ('D- (V)', nsy_dm)])
elif options.protocol == 'usb-diff':
channels = OrderedDict([('D+ - D- (V)', nsy_dd)])
else: #HSIC
channels = OrderedDict([('STROBE (V)', nsy_stb), ('DATA (V)', nsy_d)])
plot_channels(channels, records, options, plot_params)
def demo_spi(options):
import ripyl.protocol.spi as spi
print('SPI protocol\n')
# SPI params
clock_freq = 5.0e6
word_size = 8
cpol = 0
cpha = 0
# Sampled waveform params
sample_rate = clock_freq * 100.0
rise_time = min_rise_time(sample_rate) * 10.0 # 10x min. rise time
noise_snr = options.snr_db
message = options.msg
byte_msg = bytearray(message.encode('latin1')) # Get raw bytes as integers
idle_start = 0.0
#byte_msg = bytearray('SPI 1')
#idle_start = 1.0e-6
# Synthesize the waveform edge stream
# This can be fed directly into spi_decode() if an analog waveform is not needed
clk, data_io, cs = spi.spi_synth(byte_msg, word_size, clock_freq, cpol, cpha, idle_start=idle_start)
#byte_msg = bytearray('SPI 2')
#idle_start = 2.0e-6
#clk2, data_io2, cs2 = spi.spi_synth(byte_msg, word_size, clock_freq, cpol, cpha, idle_start=idle_start)
#clk = sigp.chain_edges(0.0, clk, clk2)
#data_io = sigp.chain_edges(0.0, data_io, data_io2)
#cs = sigp.chain_edges(0.0, cs, cs2)
# Convert to a sample stream with band-limited edges and noise
cln_clk_it = sigp.synth_wave(clk, sample_rate, rise_time)
cln_data_io_it = sigp.synth_wave(data_io, sample_rate, rise_time)
cln_cs_it = sigp.synth_wave(cs, sample_rate, rise_time)
nsy_clk_it = sigp.amplify(sigp.noisify(cln_clk_it, snr_db=noise_snr), gain=3.3, offset=0.0)
nsy_data_io_it = sigp.amplify(sigp.noisify(cln_data_io_it, snr_db=noise_snr), gain=3.3, offset=0.0)
nsy_cs_it = sigp.amplify(sigp.noisify(cln_cs_it, snr_db=noise_snr), gain=3.3, offset=0.0)
if options.dropout is not None:
nsy_data_io_it = sigp.dropout(nsy_data_io_it, options.dropout[0], options.dropout[1], options.dropout_level)
# Capture the samples from the iterator
nsy_clk = list(nsy_clk_it)
nsy_data_io = list(nsy_data_io_it)
nsy_cs = list(nsy_cs_it)
# Decode the samples
decode_success = True
records = []
try:
records_it = spi.spi_decode(iter(nsy_clk), iter(nsy_data_io), iter(nsy_cs), cpol, cpha)
records = list(records_it)
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
protocol_params = {
'clock frequency': eng.eng_si(clock_freq, 'Hz'),
'word size': word_size,
'cpol': cpol,
'cpha': cpha
}
wave_params = {
'sample rate': eng.eng_si(sample_rate, 'Hz'),
'rise time': eng.eng_si(rise_time, 's', 1),
'SNR': str(options.snr_db) + ' dB'
}
plot_params = {
'default_title': 'SPI Simulation',
'label_format': stream.AnnotationFormat.Text
}
# Filter out StreamEvent objects
data_records = [r for r in records if isinstance(r, stream.StreamSegment)]
report_results(data_records, byte_msg, protocol_params, wave_params, decode_success, lambda d, o: (d.data, o))
channels = OrderedDict([('CS (V)', nsy_cs), ('CLK (V)', nsy_clk), ('MOSI / MISO (V)', nsy_data_io)])
plot_channels(channels, records, options, plot_params)
def demo_i2s(options):
import ripyl.protocol.i2s as i2s
print('I2S protocol\n')
# I2S params
audio_sample_rate = 5000 / 32.0 #44100
word_size = 8
frame_size = 16
cpol = 0
wspol = 0
channels = 2
clock_freq = audio_sample_rate * channels * frame_size
# Sampled waveform params
sample_rate = clock_freq * 100.0
rise_time = min_rise_time(sample_rate) * 10.0 # 10x min. rise time
noise_snr = options.snr_db
#message = options.msg
#byte_msg = bytearray(message.encode('latin1')) # Get raw bytes as integers
samples = i2s.mono_to_stereo([0xA5, 1, 0xD1, 3,4, 0xC5])
#samples = [0xA5, 1, 0xD1, 3,4, 0xCA, 0x55, 0x55]
idle_start = 0.0
idle_start = 1e-3
idle_end = 1e-3
# Synthesize the waveform edge stream
# This can be fed directly into i2s_decode() if an analog waveform is not needed
#clk, data_io, cs = spi.spi_synth(byte_msg, word_size, clock_freq, cpol, cpha, idle_start=idle_start)
sck, sd, ws = i2s.i2s_synth(samples, word_size, frame_size, audio_sample_rate, \
cpol, wspol, channels=channels, msb_justified=True, i2s_variant=i2s.I2SVariant.Standard, \
data_offset=1, idle_start=idle_start, idle_end=idle_end)
# Convert to a sample stream with band-limited edges and noise
cln_sck_it = sigp.synth_wave(sck, sample_rate, rise_time)
cln_sd_it = sigp.synth_wave(sd, sample_rate, rise_time)
cln_ws_it = sigp.synth_wave(ws, sample_rate, rise_time)
nsy_sck_it = sigp.amplify(sigp.noisify(cln_sck_it, snr_db=noise_snr), gain=3.3, offset=0.0)
nsy_sd_it = sigp.amplify(sigp.noisify(cln_sd_it, snr_db=noise_snr), gain=3.3, offset=0.0)
nsy_ws_it = sigp.amplify(sigp.noisify(cln_ws_it, snr_db=noise_snr), gain=3.3, offset=0.0)
if options.dropout is not None:
nsy_sd_it = sigp.dropout(nsy_sd_it, options.dropout[0], options.dropout[1], \
options.dropout_level)
# Capture the samples from the iterator
nsy_sck = list(nsy_sck_it)
nsy_sd = list(nsy_sd_it)
nsy_ws = list(nsy_ws_it)
# Decode the samples
#decode_success = True
decode_success = False
records = []
try:
i2s.i2s_decode(iter(nsy_sck), iter(nsy_sd), iter(nsy_ws), word_size, frame_size, cpol, \
wspol, channels=channels, data_offset=1)
#records_it = spi.spi_decode(iter(nsy_clk), iter(nsy_data_io), iter(nsy_cs), cpol, cpha)
#records = list(records_it)
pass
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
protocol_params = {
'clock frequency': eng.eng_si(clock_freq, 'Hz'),
'word size': word_size,
'frame_size': frame_size,
'cpol': cpol,
'wspol': wspol
}
wave_params = {
'sample rate': eng.eng_si(sample_rate, 'Hz'),
'rise time': eng.eng_si(rise_time, 's', 1),
'SNR': str(options.snr_db) + ' dB'
}
plot_params = {
'default_title': 'I2S Simulation',
'label_format': stream.AnnotationFormat.Hex
}
# Filter out StreamEvent objects
#data_records = [r for r in records if isinstance(r, stream.StreamSegment)]
data_records = []
#report_results(data_records, byte_msg, protocol_params, wave_params, decode_success, lambda d, o: (d.data, o))
channels = OrderedDict([('SCK (V)', nsy_sck), ('WS (V)', nsy_ws), ('SD (V)', nsy_sd)])
plot_channels(channels, records, options, plot_params)
def demo_i2c(options):
import ripyl.protocol.i2c as i2c
print('I2C protocol\n')
# I2C params
clock_freq = 100.0e3
# Sampled waveform params
sample_rate = clock_freq * 100.0
rise_time = min_rise_time(sample_rate) * 10.0 # 10x min. rise time
noise_snr = options.snr_db
message = options.msg
byte_msg = bytearray(message.encode('latin1')) # Get raw bytes as integers
transfers = []
transfers.append(i2c.I2CTransfer(i2c.I2C.Read, 0x42, byte_msg))
#transfers = [i2c.I2CTransfer(i2c.I2C.Write, 0x42, bytearray('I2C 1')), \
# i2c.I2CTransfer(i2c.I2C.Read, 0x42, bytearray('I2C 2'))]
# Synthesize the waveform edge stream
# This can be fed directly into i2c_decode() if an analog waveform is not needed
scl, sda = i2c.i2c_synth(transfers, clock_freq, idle_start=3.0e-5, idle_end=3.0e-5)
# Convert to a sample stream with band-limited edges and noise
cln_scl_it = sigp.synth_wave(scl, sample_rate, rise_time, tau_factor=0.7)
cln_sda_it = sigp.synth_wave(sda, sample_rate, rise_time, tau_factor=1.5)
nsy_scl_it = sigp.amplify(sigp.noisify(cln_scl_it, snr_db=noise_snr), gain=3.3, offset=0.0)
nsy_sda_it = sigp.amplify(sigp.noisify(cln_sda_it, snr_db=noise_snr), gain=3.3, offset=0.0)
if options.dropout is not None:
nsy_sda_it = sigp.dropout(nsy_sda_it, options.dropout[0], options.dropout[1], options.dropout_level)
# Capture the samples from the iterator
nsy_scl = list(nsy_scl_it)
nsy_sda = list(nsy_sda_it)
# Decode the samples
decode_success = True
try:
records = list(i2c.i2c_decode(iter(nsy_scl), iter(nsy_sda)))
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
records = []
protocol_params = {
'clock frequency': eng.eng_si(clock_freq, 'Hz')
}
wave_params = {
'sample rate': eng.eng_si(sample_rate, 'Hz'),
'rise time': eng.eng_si(rise_time, 's', 1),
'SNR': str(options.snr_db) + ' dB'
}
plot_params = {
'default_title': 'I2C Simulation',
'label_format': stream.AnnotationFormat.Text
}
data_records = list(i2c.reconstruct_i2c_transfers(records))
report_results(data_records, transfers, protocol_params, wave_params, decode_success, lambda d, o: (d, o))
channels = OrderedDict([('SCL (V)', nsy_scl), ('SDA (V)', nsy_sda)])
plot_channels(channels, records, options, plot_params)
def demo_lm73(options):
import ripyl.protocol.i2c as i2c
import ripyl.protocol.lm73 as lm73
print('LM73 protocol\n')
# I2C params
clock_freq = 100.0e3
# Sampled waveform params
sample_rate = clock_freq * 100.0
rise_time = min_rise_time(sample_rate) * 10.0 # 10x min. rise time
noise_snr = options.snr_db
lm73_transfers = [
lm73.LM73Transfer(0x48, lm73.LM73Operation.SetPointer, lm73.LM73Register.Identification),
lm73.LM73Transfer(0x48, lm73.LM73Operation.ReadData, lm73.LM73Register.Identification, [0x01, 0x90]),
lm73.LM73Transfer(0x48, lm73.LM73Operation.SetPointer, lm73.LM73Register.Temperature),
lm73.LM73Transfer(0x48, lm73.LM73Operation.ReadData, lm73.LM73Register.Temperature, lm73.convert_temp(42.0)),
]
i2c_transfers = [lm.i2c_tfer for lm in lm73_transfers]
# Synthesize the waveform edge stream
# This can be fed directly into i2c_decode() if an analog waveform is not needed
scl, sda = i2c.i2c_synth(i2c_transfers, clock_freq, idle_start=3.0e-5, idle_end=3.0e-5)
# Convert to a sample stream with band-limited edges and noise
cln_scl_it = sigp.synth_wave(scl, sample_rate, rise_time, tau_factor=0.7)
cln_sda_it = sigp.synth_wave(sda, sample_rate, rise_time, tau_factor=1.5)
nsy_scl_it = sigp.amplify(sigp.noisify(cln_scl_it, snr_db=noise_snr), gain=3.3, offset=0.0)
nsy_sda_it = sigp.amplify(sigp.noisify(cln_sda_it, snr_db=noise_snr), gain=3.3, offset=0.0)
if options.dropout is not None:
nsy_sda_it = sigp.dropout(nsy_sda_it, options.dropout[0], options.dropout[1], options.dropout_level)
# Capture the samples from the iterator
nsy_scl = list(nsy_scl_it)
nsy_sda = list(nsy_sda_it)
# Decode the samples
decode_success = True
try:
records = list(i2c.i2c_decode(iter(nsy_scl), iter(nsy_sda)))
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
records = []
protocol_params = {
'clock frequency': eng.eng_si(clock_freq, 'Hz')
}
wave_params = {
'sample rate': eng.eng_si(sample_rate, 'Hz'),
'rise time': eng.eng_si(rise_time, 's', 1),
'SNR': str(options.snr_db) + ' dB'
}
plot_params = {
'default_title': 'LM73 Simulation',
'label_format': stream.AnnotationFormat.Text,
'ylim': (-0.5, 4.7)
}
i2c_records = list(i2c.reconstruct_i2c_transfers(records))
lm73_records = list(lm73.lm73_decode(iter(i2c_records)))
report_results(lm73_records, lm73_transfers, protocol_params, wave_params, decode_success, lambda d, o: (d, o))
channels = OrderedDict([('SCL (V)', nsy_scl), ('SDA (V)', nsy_sda)])
plot_channels(channels, lm73_records, options, plot_params)
def demo_uart(options):
import ripyl.protocol.uart as uart
print('UART protocol\n')
# UART params
baud = 115200
parity = 'even' # One of None, 'even', or 'odd'
bits = 8 # Can be the standard 5,6,7,8,9 or anything else
stop_bits = 1 # Can use 1, 1.5 or 2 (Or any number greater than 0.5 actualy)
polarity = uart.UARTConfig.IdleHigh
# Sampled waveform params
sample_rate = baud * 100.0
rise_time = min_rise_time(sample_rate) * 10.0 # 10x min. rise time
noise_snr = options.snr_db
message = options.msg
byte_msg = bytearray(message.encode('latin1')) # Get raw bytes as integers
#byte_msg = bytearray('UART 1')
# Synthesize the waveform edge stream
# This can be fed directly into uart_decode() if an analog waveform is not needed
edges_it = uart.uart_synth(byte_msg, bits, baud, parity, stop_bits, idle_start=8.0 / baud, idle_end=8.0 / baud)
#byte_msg = bytearray('UART 2')
#edges2_it = uart.uart_synth(byte_msg, bits, baud, parity, stop_bits, idle_start=8.0 / baud, idle_end=8.0 / baud)
#edges_it = sigp.chain_edges(0.0, edges_it, edges2_it)
# Convert to a sample stream with band-limited edges and noise
clean_samples_it = sigp.synth_wave(edges_it, sample_rate, rise_time)
noisy_samples_it = sigp.quantize(sigp.amplify(sigp.noisify(clean_samples_it, snr_db=noise_snr), gain=15.0, offset=-5), 50.0)
if options.dropout is not None:
noisy_samples_it = sigp.dropout(noisy_samples_it, options.dropout[0], options.dropout[1], options.dropout_level)
# Capture the samples from the iterator
noisy_samples = list(noisy_samples_it)
# Decode the samples
decode_success = True
records = []
try:
records_it = uart.uart_decode(iter(noisy_samples), bits, parity, stop_bits, polarity=polarity, \
baud_rate=options.baud)
records = list(records_it)
except uart.AutoBaudError as e:
print('Decode failed:\n {}'.format(e))
print('\nTry using a longer message or using the --baud option.')
print('Auto-baud requires about 50 edge transitions to be reliable.')
decode_success = False
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
protocol_params = {
'baud': baud,
'decode baud': options.baud,
'bits': bits,
'parity': parity,
'stop bits': stop_bits,
'polarity': polarity
}
wave_params = {
'sample rate': eng.eng_si(sample_rate, 'Hz'),
'rise time': eng.eng_si(rise_time, 's', 1),
'SNR': str(options.snr_db) + ' dB'
}
plot_params = {
'default_title': 'UART Simulation',
'label_format': stream.AnnotationFormat.Text
}
report_results(records, byte_msg, protocol_params, wave_params, decode_success, lambda d, o: (d.data, o))
channels = OrderedDict([('Volts', noisy_samples)])
plot_channels(channels, records, options, plot_params)
def demo_ps2(options):
import ripyl.protocol.ps2 as ps2
print('PS/2 protocol\n')
# PS2 params
clock_freq = 10.0e3
# Sampled waveform params
sample_rate = clock_freq * 100.0
rise_time = min_rise_time(sample_rate) * 10.0 # 10x min. rise time
noise_snr = options.snr_db
message = options.msg
byte_msg = bytearray(message.encode('latin1')) # Get raw bytes as integers
direction = [random.choice([ps2.PS2Dir.DeviceToHost, ps2.PS2Dir.HostToDevice]) for b in byte_msg]
#byte_msg = bytearray('2hst 2dev')
#direction = [ps2.PS2Dir.DeviceToHost]*4 + [ps2.PS2Dir.HostToDevice]*5
frames = [ps2.PS2Frame(b, d) for b, d in zip(byte_msg, direction)]
# Synthesize the waveform edge stream
# This can be fed directly into spi_decode() if an analog waveform is not needed
clk, data = ps2.ps2_synth(frames, clock_freq, 4 / clock_freq, 5 / clock_freq)
# Convert to a sample stream with band-limited edges and noise
cln_clk_it = sigp.synth_wave(clk, sample_rate, rise_time)
cln_data_it = sigp.synth_wave(data, sample_rate, rise_time)
nsy_clk_it = sigp.amplify(sigp.noisify(cln_clk_it, snr_db=noise_snr), gain=3.3, offset=0.0)
nsy_data_it = sigp.amplify(sigp.noisify(cln_data_it, snr_db=noise_snr), gain=3.3, offset=0.0)
if options.dropout is not None:
nsy_data_it = sigp.dropout(nsy_data_it, options.dropout[0], options.dropout[1], options.dropout_level)
# Capture the samples from the iterator
nsy_clk = list(nsy_clk_it)
nsy_data = list(nsy_data_it)
# Decode the samples
decode_success = True
records = []
try:
records_it = ps2.ps2_decode(iter(nsy_clk), iter(nsy_data))
records = list(records_it)
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
protocol_params = {
'clock frequency': eng.eng_si(clock_freq, 'Hz')
}
wave_params = {
'sample rate': eng.eng_si(sample_rate, 'Hz'),
'rise time': eng.eng_si(rise_time, 's', 1),
'SNR': str(options.snr_db) + ' dB'
}
plot_params = {
'default_title': 'PS/2 Simulation',
'label_format': stream.AnnotationFormat.Text
}
report_results(records, frames, protocol_params, wave_params, decode_success, lambda d, o: (d.data, o))
channels = OrderedDict([('CLK (V)', nsy_clk), ('DATA (V)', nsy_data)])
plot_channels(channels, records, options, plot_params)
def demo_kline(options):
import ripyl.protocol.iso_k_line as kline
print('ISO K-Line protocol\n')
# K-Line params
baud = 10400
# Sampled waveform params
sample_rate = baud * 100.0
rise_time = min_rise_time(sample_rate) * 10.0 # 10x min. rise time
noise_snr = options.snr_db
messages = [
# ISO9141 supported PIDs
[0x68, 0x6A, 0xF1, 0x01, 0x00, 0xC4],
[0x48, 0x6B, 0xD1, 0x41, 0x00, 0xBE, 0x1E, 0x90, 0x11, 0x42],
# ISO14230 supported PIDs
[0x82, 0xD1, 0xF1, 0x01, 0x00, 0x45],
[0x86, 0xF1, 0xD1, 0x41, 0x00, 0x01, 0x02, 0x03, 0x04, 0x93],
# ISO14230 supported PIDs (4-byte header)
[0x80, 0x02, 0xD1, 0xF1, 0x01, 0x00, 0x45],
[0x80, 0x06, 0xF1, 0xD1, 0x41, 0x00, 0x01, 0x02, 0x03, 0x04, 0x93],
# Sagem proprietary SID
[0x68, 0x6A, 0xF1, 0x22, 0x00, 0x1A, 0xFF],
[0x48, 0x6B, 0xD1, 0x62, 0x00, 0x1A, 0x00, 0x35, 0x35]
]
#messages = messages[0:2]
# Synthesize the waveform edge stream
# This can be fed directly into iso_k_line_decode() if an analog waveform is not needed
edges_it = kline.iso_k_line_synth(messages, message_interval=8.0e-3, idle_start=8.0 / baud, idle_end=8.0 / baud)
# Convert to a sample stream with band-limited edges and noise
clean_samples_it = sigp.synth_wave(edges_it, sample_rate, rise_time)
noisy_samples_it = sigp.quantize(sigp.amplify(sigp.noisify(clean_samples_it, snr_db=noise_snr), gain=12.0), 50.0)
if options.dropout is not None:
noisy_samples_it = sigp.dropout(noisy_samples_it, options.dropout[0], options.dropout[1], options.dropout_level)
# Capture the samples from the iterator
noisy_samples = list(noisy_samples_it)
# Decode the samples
decode_success = True
records = []
try:
records_it = kline.iso_k_line_decode(iter(noisy_samples))
records = list(records_it)
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
protocol_params = {
}
wave_params = {
'sample rate': eng.eng_si(sample_rate, 'Hz'),
'rise time': eng.eng_si(rise_time, 's', 1),
'SNR': str(options.snr_db) + ' dB'
}
plot_params = {
'default_title': 'ISO K-Line Simulation',
'label_format': stream.AnnotationFormat.Hex
}
report_results(records, messages, protocol_params, wave_params, decode_success, lambda d, o: (d.msg.raw_data(full_message=True), o) )
channels = OrderedDict([('Volts', noisy_samples)])
plot_channels(channels, records, options, plot_params)
def demo_rc5(options):
import ripyl.protocol.infrared.rc5 as rc5
# Sampled waveform params
carrier_freq = 36.0e3
sample_rate = carrier_freq * 20.0
rise_time = min_rise_time(sample_rate) * 4.0 # 4x min. rise time
noise_snr = options.snr_db
messages = [ \
rc5.RC5Message(cmd=0x42, addr=0x14, toggle=0), \
rc5.RC5Message(cmd=0x32, addr=0x1A, toggle=1) \
]
#messages = [messages[0]]
# Synthesize the waveform edge stream
edges = rc5.rc5_synth(messages, message_interval=5.0e-3, idle_start=1.0e-3, idle_end=1.0e-3)
edges = ir.modulate(edges, carrier_freq, duty_cycle=0.3)
noisy_samples = list(edges_to_waveform(edges, options, sample_rate, rise_time, 5.0, quant_full_range=10.0))
# Decode the samples
decode_success = True
try:
records = list(rc5.rc5_decode(iter(noisy_samples)))
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
records = []
wave_params = {
'sample rate': eng.eng_si(sample_rate, 'Hz'),
'rise time': eng.eng_si(rise_time, 's', 1),
'SNR': str(options.snr_db) + ' dB'
}
plot_params = {
'default_title': 'RC5 Simulation',
'label_format': stream.AnnotationFormat.Hex
}
report_results(records, messages, {}, wave_params, decode_success, lambda d, o: (d.data, o))
channels = OrderedDict([('Volts', noisy_samples)])
plot_channels(channels, records, options, plot_params)
def demo_rc6(options):
import ripyl.protocol.infrared.rc6 as rc6
# Sampled waveform params
carrier_freq = 36.0e3
sample_rate = carrier_freq * 20.0
rise_time = min_rise_time(sample_rate) * 4.0 # 4x min. rise time
noise_snr = options.snr_db
messages = [ \
rc6.RC6Message(cmd=0x42, addr=0x14, toggle=0, mode=0), \
rc6.RC6Message(cmd=0x32, addr=0x1A, toggle=1, mode=1) \
]
#messages = [messages[0]]
# Synthesize the waveform edge stream
edges = rc6.rc6_synth(messages, message_interval=5.0e-3, idle_start=1.0e-3, idle_end=1.0e-3)
edges = ir.modulate(edges, carrier_freq, duty_cycle=0.3)
noisy_samples = list(edges_to_waveform(edges, options, sample_rate, rise_time, 5.0, quant_full_range=10.0))
# Decode the samples
decode_success = True
try:
records = list(rc6.rc6_decode(iter(noisy_samples)))
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False
records = []
wave_params = {
'sample rate': eng.eng_si(sample_rate, 'Hz'),
'rise time': eng.eng_si(rise_time, 's', 1),
'SNR': str(options.snr_db) + ' dB'
}
plot_params = {
'default_title': 'RC6 Simulation',
'label_format': stream.AnnotationFormat.Hex
}
report_results(records, messages, {}, wave_params, decode_success, lambda d, o: (d.data, o))
channels = OrderedDict([('Volts', noisy_samples)])
plot_channels(channels, records, options, plot_params)
def demo_nec(options):
import ripyl.protocol.infrared.nec as nec
# Sampled waveform params
carrier_freq = 38.0e3
sample_rate = carrier_freq * 20.0
rise_time = min_rise_time(sample_rate) * 4.0 # 4x min. rise time
noise_snr = options.snr_db
messages = [ \
nec.NECMessage(cmd=0x42, addr_low=0x14), \
nec.NECRepeat(), \
nec.NECMessage(cmd=0x32, addr_low=0x1A) \
]
#messages = messages[0:2]
# Synthesize the waveform edge stream
edges = nec.nec_synth(messages, message_interval=5.0e-3, idle_start=1.0e-3, idle_end=1.0e-3)
edges = ir.modulate(edges, carrier_freq, duty_cycle=0.3)
noisy_samples = list(edges_to_waveform(edges, options, sample_rate, rise_time, 5.0, quant_full_range=10.0))
# Decode the samples
decode_success = True
try:
records = list(nec.nec_decode(iter(noisy_samples)))
except stream.StreamError as e:
print('Decode failed:\n {}'.format(e))
decode_success = False