-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
91 lines (71 loc) · 3.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from constants import EPOCHS, LR, TBOARD_PATH, LOAD_MODEL, SIZE, DEVICE
import torch
import torch.optim as optim
from torch import nn
from loaders.dataset import get_classification_dataset, get_car_detection_dataset
from torch.utils.tensorboard import SummaryWriter
from tester import test_net
import time
import os
from datetime import datetime
from initializer import load_model
def main(test_train=True, test_test=True):
trainloader, validationloader, testloader = get_classification_dataset()
net = load_model('mnas_xs')
dt_string = datetime.now().strftime("_%d_%m_%Y_%H_%M")
writer = get_tboard_writer(net, dt_string, TBOARD_PATH)
params = sum(p.numel() for p in net.parameters() if p.requires_grad)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=LR)
print('Training net ({} parameters, device = {})...'.format(params, DEVICE))
for epoch in range(EPOCHS):
epoch_loss = 0.0
running_loss = 0.0
t = time.time()
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(DEVICE), data[1].to(DEVICE)
# optimizer = scheduler(optimizer, epoch)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss += outputs.shape[0] * loss.item()
running_loss += loss.item()
if i % 30 == 29:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 30))
running_loss = 0.0
print('Testing on validation dataset...')
metric = test_net(net, validationloader)
writer.add_scalar('training loss', epoch_loss / i, epoch + 1)
writer.add_scalar('valid TOP1 acc', metric['TOP1'], epoch + 1)
writer.add_scalar('valid TOP5 acc', metric['TOP5'], epoch + 1)
print("Epoch {} finished after {:.1f} seconds. Training loss = {}. Validation loss = "
"{}(top1), {}(top5)".format(epoch + 1, time.time() - t, loss.item(), metric['TOP1'], metric['TOP5'])
)
save_model(net, epoch, dt_string)
print('Finished Training')
if test_train:
print('Testing on training set...', end="")
print(test_net(net, trainloader))
if test_test:
print('Testing on test set...', end="")
print(test_net(net, testloader))
def get_tboard_writer(net, dt_string, tboard_path: str = TBOARD_PATH):
summary_writer_path = os.path.join(tboard_path, net.name + dt_string)
if not os.path.exists(summary_writer_path):
os.mkdir(summary_writer_path)
writer = SummaryWriter(os.path.join(summary_writer_path))
return writer
def save_model(net, epoch, dt_string):
saving_path = os.path.join("saved_models", net.name + dt_string)
if not os.path.exists(saving_path):
os.mkdir(saving_path)
name = net.name + str(epoch + 1) + ".pth"
torch.save(
net.state_dict(),
os.path.join(saving_path, name)
)
if __name__ == '__main__':
main()