forked from hsinyilin19/ResNetVAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ResNetVAE_MNIST.py
173 lines (133 loc) · 6.45 KB
/
ResNetVAE_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import glob
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torchvision.transforms as transforms
import torch.utils.data as data
import torchvision
from torch.autograd import Variable
import matplotlib.pyplot as plt
from modules import *
from sklearn.model_selection import train_test_split
import pickle
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# EncoderCNN architecture
CNN_fc_hidden1, CNN_fc_hidden2 = 1024, 1024
CNN_embed_dim = 256 # latent dim extracted by 2D CNN
res_size = 224 # ResNet image size
dropout_p = 0.2 # dropout probability
# training parameters
epochs = 20 # training epochs
batch_size = 50
learning_rate = 1e-3
log_interval = 10 # interval for displaying training info
# save model
save_model_path = './results_MNIST'
def check_mkdir(dir_name):
if not os.path.exists(dir_name):
os.mkdir(dir_name)
def loss_function(recon_x, x, mu, logvar):
# MSE = F.mse_loss(recon_x, x, reduction='sum')
MSE = F.binary_cross_entropy(recon_x, x, reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return MSE + KLD
def train(log_interval, model, device, train_loader, optimizer, epoch):
# set model as training mode
model.train()
losses = []
all_y, all_z, all_mu, all_logvar = [], [], [], []
N_count = 0 # counting total trained sample in one epoch
for batch_idx, (X, y) in enumerate(train_loader):
# distribute data to device
X, y = X.to(device), y.to(device).view(-1, )
N_count += X.size(0)
optimizer.zero_grad()
X_reconst, z, mu, logvar = model(X) # VAE
loss = loss_function(X_reconst, X, mu, logvar)
losses.append(loss.item())
loss.backward()
optimizer.step()
all_y.extend(y.data.cpu().numpy())
all_z.extend(z.data.cpu().numpy())
all_mu.extend(mu.data.cpu().numpy())
all_logvar.extend(logvar.data.cpu().numpy())
# show information
if (batch_idx + 1) % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch + 1, N_count, len(train_loader.dataset), 100. * (batch_idx + 1) / len(train_loader), loss.item()))
all_y = np.stack(all_y, axis=0)
all_z = np.stack(all_z, axis=0)
all_mu = np.stack(all_mu, axis=0)
all_logvar = np.stack(all_logvar, axis=0)
# save Pytorch models of best record
torch.save(model.state_dict(), os.path.join(save_model_path, 'model_epoch{}.pth'.format(epoch + 1))) # save motion_encoder
torch.save(optimizer.state_dict(), os.path.join(save_model_path, 'optimizer_epoch{}.pth'.format(epoch + 1))) # save optimizer
print("Epoch {} model saved!".format(epoch + 1))
return X.data.cpu().numpy(), all_y, all_z, all_mu, all_logvar, losses
def validation(model, device, optimizer, test_loader):
# set model as testing mode
model.eval()
test_loss = 0
all_y, all_z, all_mu, all_logvar = [], [], [], []
with torch.no_grad():
for X, y in test_loader:
# distribute data to device
X, y = X.to(device), y.to(device).view(-1, )
X_reconst, z, mu, logvar = model(X)
loss = loss_function(X_reconst, X, mu, logvar)
test_loss += loss.item() # sum up batch loss
all_y.extend(y.data.cpu().numpy())
all_z.extend(z.data.cpu().numpy())
all_mu.extend(mu.data.cpu().numpy())
all_logvar.extend(logvar.data.cpu().numpy())
test_loss /= len(test_loader.dataset)
all_y = np.stack(all_y, axis=0)
all_z = np.stack(all_z, axis=0)
all_mu = np.stack(all_mu, axis=0)
all_logvar = np.stack(all_logvar, axis=0)
# show information
print('\nTest set ({:d} samples): Average loss: {:.4f}\n'.format(len(test_loader.dataset), test_loss))
return X.data.cpu().numpy(), all_y, all_z, all_mu, all_logvar, test_loss
# Detect devices
use_cuda = torch.cuda.is_available() # check if GPU exists
device = torch.device("cuda" if use_cuda else "cpu") # use CPU or GPU
# Data loading parameters
params = {'batch_size': batch_size, 'shuffle': True, 'num_workers': 4, 'pin_memory': True} if use_cuda else {}
transform = transforms.Compose([transforms.Resize([res_size, res_size]),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.repeat(3, 1, 1)), # gray -> GRB 3 channel (lambda function)
transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0])]) # for grayscale images
# MNIST dataset (images and labels)
MNIST_train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True)
MNIST_test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transform)
# Data loader (input pipeline)
train_loader = torch.utils.data.DataLoader(dataset=MNIST_train_dataset, batch_size=batch_size, shuffle=True)
valid_loader = torch.utils.data.DataLoader(dataset=MNIST_test_dataset, batch_size=batch_size, shuffle=False)
# Create model
resnet_vae = ResNet_VAE(fc_hidden1=CNN_fc_hidden1, fc_hidden2=CNN_fc_hidden2, drop_p=dropout_p, CNN_embed_dim=CNN_embed_dim).to(device)
print("Using", torch.cuda.device_count(), "GPU!")
model_params = list(resnet_vae.parameters())
optimizer = torch.optim.Adam(model_params, lr=learning_rate)
# record training process
epoch_train_losses = []
epoch_test_losses = []
check_mkdir(save_model_path)
# start training
for epoch in range(epochs):
# train, test model
X_train, y_train, z_train, mu_train, logvar_train, train_losses = train(log_interval, resnet_vae, device, train_loader, optimizer, epoch)
X_test, y_test, z_test, mu_test, logvar_test, epoch_test_loss = validation(resnet_vae, device, optimizer, valid_loader)
# save results
epoch_train_losses.append(train_losses)
epoch_test_losses.append(epoch_test_loss)
# save all train test results
A = np.array(epoch_train_losses)
C = np.array(epoch_test_losses)
np.save(os.path.join(save_model_path, 'ResNet_VAE_training_loss.npy'), A)
np.save(os.path.join(save_model_path, 'X_MNIST_train_epoch{}.npy'.format(epoch + 1)), X_train) #save last batch
np.save(os.path.join(save_model_path, 'y_MNIST_train_epoch{}.npy'.format(epoch + 1)), y_train)
np.save(os.path.join(save_model_path, 'z_MNIST_train_epoch{}.npy'.format(epoch + 1)), z_train)