-
Notifications
You must be signed in to change notification settings - Fork 30
/
presets.py
47 lines (41 loc) · 1.5 KB
/
presets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import transforms as T
class DetectionPresetTrain:
def __init__(self, data_augmentation, hflip_prob=0.5, mean=(123.0, 117.0, 104.0)):
if data_augmentation == "hflip":
self.transforms = T.Compose(
[
T.RandomHorizontalFlip(p=hflip_prob),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
]
)
elif data_augmentation == "ssd":
self.transforms = T.Compose(
[
T.RandomPhotometricDistort(),
T.RandomZoomOut(fill=list(mean)),
T.RandomIoUCrop(),
T.RandomHorizontalFlip(p=hflip_prob),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
]
)
elif data_augmentation == "ssdlite":
self.transforms = T.Compose(
[
T.RandomIoUCrop(),
T.RandomHorizontalFlip(p=hflip_prob),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
]
)
else:
raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"')
def __call__(self, img, target):
return self.transforms(img, target)
class DetectionPresetEval:
def __init__(self):
self.transforms = T.ToTensor()
def __call__(self, img, target):
return self.transforms(img, target)