-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinitdb3.py
202 lines (192 loc) · 8.67 KB
/
initdb3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import ydb
import datetime
import psycopg2.extras
schema = [
{ 'tablename':'stock',
'columns':[
{'product':ydb.PrimitiveType.Utf8},
{'quantity':ydb.PrimitiveType.Int64}
],
'uniformPartitions':20,
'partitionByLoad':1,
'pk':['product']
},
{ 'tablename':'orders',
'columns':[
{'id':ydb.PrimitiveType.Uint64},
{'customer':ydb.PrimitiveType.Utf8},
{'created':ydb.PrimitiveType.Datetime},
{'processed':ydb.PrimitiveType.Datetime}
],
'uniformPartitions':20,
'partitionByLoad':1,
'pk':['id'],
'indexes':[
{ 'name':'ix_cust', 'columns': ['customer','created'] }
],
'read_replicas_per_az':1
},
{ 'tablename':'orderLines',
'columns':[
{'id_order':ydb.PrimitiveType.Uint64},
{'product':ydb.PrimitiveType.Utf8},
{'quantity':ydb.PrimitiveType.Uint64}
],
'uniformPartitions':20,
'partitionByLoad':1,
'pk':['id_order','product']
},
{ 'sequencename':'seq_orders'
}
]
def pgType( yqlType ):
ret = 'unknown'
if (yqlType == ydb.PrimitiveType.Utf8): ret = 'Varchar'
elif (yqlType == ydb.PrimitiveType.Uint64): ret = 'BigInt'
elif (yqlType == ydb.PrimitiveType.Int64): ret = 'BigInt'
elif (yqlType == ydb.PrimitiveType.Datetime): ret = 'Timestamp'
return ret
def run_pg( conn, pcount, quantity = 5000, cockroach = False ):
stock_pg = [ ( "p" + ("000000" + str(n))[-6:], quantity+n ) for n in range(pcount)]
filldata_pg = {'stock':stock_pg }
# Generate tables if not exist
cur = conn.cursor()
cols = {}
pkcols = {}
npkcols = {}
for t in schema:
if 'tablename' in t.keys():
cdef = ''
collist = ''
npklist = []
for c in t['columns']:
colname = list(c.keys())[0]
cdef = cdef + ', ' + colname + ' ' + pgType(c[colname])
collist = collist + ', ' + colname
if not colname in t['pk']: npklist.append( colname )
pk = (', ').join(t['pk'])
q = 'CREATE TABLE IF NOT EXISTS ' + t['tablename'] + '( ' + cdef[2:] + ', PRIMARY KEY (' + pk + '))'
cur.execute(q)
cols[t['tablename']] = collist[2:]
pkcols[t['tablename']] = pk
npkcols[t['tablename']] = npklist
if cockroach and 'uniformPartitions' in t:
up = t['uniformPartitions']
spli = ""
if t['tablename']=='stock':
for i in range(up):
p = stock_pg[len(stock_pg)//up*i][0]
spli = spli + ", ('" + p + "')"
elif t['tablename'] in ('orders','orderLines'):
for i in range(up):
p = 2**64//up*i-2**63
spli = spli + ", (" + str(p) + ")"
if spli > "":
q = 'ALTER TABLE ' + t['tablename'] + ' SPLIT AT VALUES ' + spli[1:]
# print(q)
cur.execute(q)
if 'indexes' in t.keys():
for i in t['indexes']:
cl = ''
for c in i['columns']:
cl = cl + c + ', '
q = 'CREATE INDEX IF NOT EXISTS ' + i['name'] + ' on ' + t['tablename'] + ' ( ' + cl[:-2] + ' ) '
cur.execute(q)
elif 'sequencename' in t.keys():
q = 'CREATE SEQUENCE IF NOT EXISTS ' + t['sequencename'] + ' CACHE 1000'
cur.execute(q)
else:
raise ValueError( 'Unknown schema object' )
conn.commit()
# Fill tables with initial data
ds = datetime.datetime.now()
rowcount = 0
for tablename in list(filldata_pg.keys()):
rows = filldata_pg[tablename]
q = 'INSERT INTO ' + tablename + '( ' + cols[tablename] + ' ) VALUES %s ON CONFLICT( ' + pkcols[tablename] +' ) DO UPDATE SET '
for x in npkcols[tablename]:
q = q + x + ' = EXCLUDED.' + x + ', '
q = q[:-2]
psycopg2.extras.execute_values( cur, q, rows )
rowcount = rowcount + len(rows)
conn.commit()
df = datetime.datetime.now()
print('Fill data,', rowcount, 'record(s):', df - ds )
def run_ydb( tableclient, pool, database, pcount, quantity = 5000 ):
stock = [ { "product": "p" + ("000000" + str(n))[-6:], "quantity": quantity } for n in range(pcount)]
# Generate tables if not exist
colbuc = {}
with pool.checkout() as session:
for t in schema:
if 'tablename' in t.keys():
td = ydb.TableDescription()
buc = ydb.BulkUpsertColumns() # why it's a different object to TableDescription?!
for c in t['columns']:
colname = list(c.keys())[0]
td = td.with_column(ydb.Column(colname, ydb.OptionalType(c[colname])))
buc = buc.add_column(colname, c[colname])
if 'partitionByLoad' in t or 'uniformPartitions' in t:
part_settings = ydb.PartitioningSettings()
# policy = ydb.PartitioningPolicy().with_auto_partitioning(ydb.AutoPartitioningPolicy.AUTO_SPLIT)
if 'partitionByLoad' in t and t['partitionByLoad']:
part_settings = part_settings.with_partitioning_by_load(ydb.FeatureFlag.ENABLED)
if 'uniformPartitions' in t:
up = t['uniformPartitions']
if t['tablename']=='stock':
pdef = []
pdefs = []
for i in range(up):
p = stock[len(stock)//up*i]['product']
pdef.append( ydb.KeyBound((p, )))
pdefs.append(p)
print(pdefs)
pdeft = tuple(pdef)
# policy = policy.with_explicit_partitions( ydb.ExplicitPartitions( pdeft ))
td = td.with_partition_at_keys( ydb.ExplicitPartitions( pdeft ))
else:
# policy = policy.with_uniform_partitions( up )
td = td.with_uniform_partitions( up )
part_settings = part_settings.with_min_partitions_count( up * 3 )
# profile = ydb.TableProfile().with_partitioning_policy(policy)
td = td.with_partitioning_settings( part_settings )
# td = td.with_profile( profile )
if 'indexes' in t:
for i in t['indexes']:
td = td.with_indexes( ydb.TableIndex(i['name']).with_index_columns(*i['columns']) )
if 'read_replicas_per_az' in t:
td = td.with_read_replicas_settings(ydb.ReadReplicasSettings().with_per_az_read_replicas_count(t['read_replicas_per_az']))
session.create_table(
database + '/' + t['tablename'],
td.with_primary_keys(*t['pk'])
)
colbuc[t['tablename']] = buc
# Fill tables with initial data
filldata = {'stock':stock }
ds = datetime.datetime.now()
rowcount = 0
#pq_addord = session.prepare("""
# DECLARE $stock AS List<Struct<product:Utf8,quantity:UInt64>>;
# UPSERT INTO stock (product, quantity) SELECT product, quantity FROM AS_TABLE( $stock );
# """)
t = session.transaction(ydb.SerializableReadWrite())
for tablename in list(filldata.keys()):
rows = filldata[tablename]
# t.execute( pq_addord, {"$stock":rows}, commit_tx = True )
tableclient.bulk_upsert( database + '/' + tablename, rows, colbuc[tablename]) # two times faster than exec(upsert from as_table()), but 4MB grpc limit is still in place!
rowcount = rowcount + len(rows)
df = datetime.datetime.now()
print('Fill data,', rowcount, 'record(s):', df - ds )
def run_mongo( client, db, pcount, quantity = 5000 ):
exist = db.list_collection_names()
must = [schema[x]['tablename'] for x in range(len(schema))]
for t in set(must) - set(exist):
db.create_collection( t )
stock = [ { "_id": "p" + ("000000" + str(n))[-6:], "quantity": quantity+n } for n in range(pcount)]
ds = datetime.datetime.now()
for x in stock:
db.stock.update(
{'_id':x['_id']},
x,
upsert=True)
df = datetime.datetime.now()
print('Fill data,', len(stock), 'record(s):', df - ds )