Skip to content

Commit e6104c2

Browse files
committed
precalc stuff
1 parent 5024f8a commit e6104c2

File tree

2 files changed

+167
-0
lines changed

2 files changed

+167
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,81 @@
1+
---
2+
title: 基礎微積分統整
3+
description: 一個基礎微積分概念的統整。
4+
slug: 20240621-precalc
5+
lang: zh-tw
6+
date: 2024-06-21
7+
type: Post
8+
tags:
9+
- math
10+
---
11+
12+
_這不完全與電腦科學有關,所以我沒有貼那個標籤:P。此文中函數只有單參數。_
13+
14+
## 極限
15+
16+
```math
17+
\lim_{x \rightarrow a^{+}}{f(x)} = b
18+
```
19+
20+
表示當$x$由右側趨近$a$時,$f$趨近$b$,這被稱為右極限。
21+
22+
```math
23+
\lim_{x \rightarrow a^{-}}{f(x)} = b
24+
```
25+
26+
表示當$x$由左側趨近$a$時,$f$趨近$b$,這被稱為左極限。當兩者相同時,即
27+
28+
```math
29+
\lim_{x \rightarrow a^{+}}{f(x)} = \lim_{x \rightarrow a^{-}}{f(x)} = b
30+
```
31+
32+
,表示當$x$趨近$a$,$f$趨近$b$,即
33+
34+
```math
35+
\lim_{x \rightarrow a}{f(x)} = b
36+
```
37+
38+
,這也代表$f$在$x=a$極限存在。
39+
40+
## 連續性
41+
42+
若函數在特定區間連續,則它必須先在其極限存在,若$f: R \rightarrow R, f(x)$是連續的,
43+
其中$x \in [a,b]$,則它必須滿足下列事實:
44+
45+
1. 對所有$c \in [a,b]$,$f, x=c$必須極限存在。
46+
2. 對所有$c \in [a,b]$,$f(c) = \lim_{x \rightarrow c}{f(c)}$
47+
48+
## 導數
49+
50+
一個函數對於特定參數的導數是這函數基於特定參數變化的函數,舉例來說,$f: R \rightarrow R, f(x)$對$x$的導數是$\frac{df}{dx}$。
51+
它可以被定義為下
52+
53+
```math
54+
\frac{df(x)}{dx} = \lim_{h \rightarrow 0}{\frac{f(x+h) - f(x)}{h}}
55+
```
56+
57+
## 可微分
58+
59+
如果函數在區間中可微分,則它必須在區間中連續,若$f: R \rightarrow R, f(x)$可微,則它的導數是連續的,於是我們可以總結
60+
61+
```math
62+
\text{可微分} \implies \text{連續} \implies \text{極限存在}
63+
```
64+
65+
## IVT 介質定理
66+
67+
對於在區間$[a,b]$連續的函數$f$而言,它必須滿足下列事實$\forall c \in [\min(f(a), f(b)), \max(f(a), f(b)) ]$,
68+
存在$r$滿足$f(r) = c \{r \in [a,b]\}$。
69+
70+
## 邊界定理
71+
72+
對於在區間$[a,b]的函數$f$,$U$表示上限集合(純量),$L$代表下限集合(純量)。
73+
定義$v, \forall v \in [a, b]$,
74+
75+
```math
76+
l \leq f(v) \leq u, l \in L, u \in U
77+
```
78+
79+
## EVT 極值定理
80+
81+
當我們將上下限集合限制只有對應在區間中$f$的值,我們會得到極值定理,其中$L$與$U$個別被縮減成單一值$f(c)$與$f(d)$。
+86
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,86 @@
1+
---
2+
title: Precalc Summary
3+
description: This is a collection of precalculus concepts.
4+
slug: 20240621-precalc
5+
lang: en
6+
date: 2024-06-21
7+
type: Post
8+
tags:
9+
- math
10+
---
11+
12+
_This isn't completely related to computer science so I didn't include the tag :P. Functions in this article only have
13+
single variables._
14+
15+
## Limit
16+
17+
```math
18+
\lim_{x \rightarrow a^{+}}{f(x)} = b
19+
```
20+
21+
represents the fact that when $x$ approaches $a$ from right, $f$ approaches $b$, which is called a "right limit".
22+
23+
```math
24+
\lim_{x \rightarrow a^{-}}{f(x)} = b
25+
```
26+
27+
represents the fact that when $x$ approaches $a$ from left, $f$ approaches $b$, which is called a "left limit".
28+
When both of them are the same, that is
29+
30+
```math
31+
\lim_{x \rightarrow a^{+}}{f(x)} = \lim_{x \rightarrow a^{-}}{f(x)} = b
32+
```
33+
34+
, we say that when $x$ approaches $a$, $f$ approaches $b$, which is
35+
36+
```math
37+
\lim_{x \rightarrow a}{f(x)} = b
38+
```
39+
40+
, this also shows that $f$ has a limit at $x=a$.
41+
42+
## Continuity
43+
44+
For a function to be continuous in a certain interval, it must first have limit in that interval. If $f: R \rightarrow R, f(x)$ is
45+
continuous given $x \in [a,b]$, then it must satisfy the following facts:
46+
47+
1. For all $c$ in $[a,b]$, $f$ at $x=c$ must have a limit that is defined.
48+
2. For all $c$ in $[a,b]$, $f(c) = \lim_{x \rightarrow c}{f(c)}$
49+
50+
## Derivative
51+
52+
A function's derivative with respect to a specific variable is the function's change regarding the change of the specified variable.
53+
For example, the derivative of $f: R \rightarrow R, f(x)$ regarding $x$ is $\frac{df}{dx}$.
54+
It can be defined like this:
55+
56+
```math
57+
\frac{df(x)}{dx} = \lim_{h \rightarrow 0}{\frac{f(x+h) - f(x)}{h}}
58+
```
59+
60+
## Differentiable
61+
62+
When a function is differentiable in a certain interval, it must first be continuous in that interval. If $f: R \rightarrow R, f(x)$
63+
is differentiable, then its derivative must be continuous, so finally we can say that
64+
65+
```math
66+
\text{Differentiable} \implies \text{Continuous} \implies \text{Limit Existing}
67+
```
68+
69+
## IVT Intermediate Value Theorem
70+
71+
For a continuous function $f$ in interval $[a,b]$, it must satisfy the following fact: $\forall c \in [\min(f(a), f(b)), \max(f(a), f(b)) ]$,
72+
there exists at least one $r$ that fulfills $f(r) = c \{r \in [a,b]\}$.
73+
74+
## Boundedness Theorem
75+
76+
For a function $f$ in interval $[a,b]$, $U$ denotes the set of upper bounds (scalar) and $L$ denotes the set of lower bounds (scalar).
77+
Define $v, \forall v \in [a, b]$,
78+
79+
```math
80+
l \leq f(v) \leq u, l \in L, u \in U
81+
```
82+
83+
## EVT Extreme Value Theorem
84+
85+
When we limit the upper bound set and the lower bound set to only include values that exist as $f$'s output, we get EVT,
86+
where $L$ and $U$ are each reduced respectively to a single value, $f(c)$ and $f(d)$.

0 commit comments

Comments
 (0)