forked from susanli2016/Machine-Learning-with-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tpot_Mercedes_testing_time_pipeline.py
22 lines (19 loc) · 1.08 KB
/
tpot_Mercedes_testing_time_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor
from sklearn.pipeline import make_pipeline, make_union
from tpot.builtins import StackingEstimator
# NOTE: Make sure that the class is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1).values
training_features, testing_features, training_target, testing_target = \
train_test_split(features, tpot_data['target'].values, random_state=None)
# Average CV score on the training set was:-74.90881962449828
exported_pipeline = make_pipeline(
StackingEstimator(estimator=KNeighborsRegressor(n_neighbors=47, p=1, weights="uniform")),
RandomForestRegressor(bootstrap=True, max_features=0.25, min_samples_leaf=16, min_samples_split=4, n_estimators=100)
)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)