-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
61 lines (41 loc) · 1.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import base64
from io import BytesIO
from PIL import Image
def convert_to_base64(image_file_path):
"""
Convert PIL images to Base64 encoded strings
:param pil_image: PIL image
:return: Re-sized Base64 string
"""
pil_image = Image.open(image_file_path)
buffered = BytesIO()
pil_image.save(buffered, format="png") # You can change the format if needed
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def convert_to_html(img_base64):
"""
Disply base64 encoded string as image
:param img_base64: Base64 string
"""
# Create an HTML img tag with the base64 string as the source
image_html = f'<img src="data:image/jpeg;base64,{img_base64}" style="max-width: 100%;"/>'
return image_html
# To display the image by rendering the HTML
# from IPython.display import HTML, display
# display(HTML(image_html))
if __name__ == "__main__":
# https://python.langchain.com/docs/integrations/llms/ollama#multi-modal
# example
file_path = "/Users/aziz/Desktop/style.png"
# pil_image = Image.open(file_path)
# image_b64 = convert_to_base64(pil_image)
# plt_img_base64(image_b64)
image_b64 = convert_to_base64(file_path)
plt_img_base64(image_b64)
# create mmodel
from langchain.llms import Ollama
bakllava = Ollama(model="bakllava")
# run model
llm_with_image_context = bakllava.bind(images=[image_b64])
res = llm_with_image_context.invoke("Describe the image:")
print(res)