forked from nyuhuyang/LeetCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
search-for-a-range.py
63 lines (57 loc) · 1.89 KB
/
search-for-a-range.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Time: O(logn)
# Space: O(1)
#
# Given a sorted array of integers, find the starting and ending position of a given target value.
#
# Your algorithm's runtime complexity must be in the order of O(log n).
#
# If the target is not found in the array, return [-1, -1].
#
# For example,
# Given [5, 7, 7, 8, 8, 10] and target value 8,
# return [3, 4].
#
class Solution(object):
def searchRange(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
# Find the first index where target <= nums[idx]
left = self.binarySearch(lambda x, y: x >= y, nums, target)
if left >= len(nums) or nums[left] != target:
return [-1, -1]
# Find the first index where target < nums[idx]
right = self.binarySearch(lambda x, y: x > y, nums, target)
return [left, right - 1]
def binarySearch(self, compare, nums, target):
left, right = 0, len(nums)
while left < right:
mid = left + (right - left) / 2
if compare(nums[mid], target):
right = mid
else:
left = mid + 1
return left
def binarySearch2(self, compare, nums, target):
left, right = 0, len(nums) - 1
while left <= right:
mid = left + (right - left) / 2
if compare(nums[mid], target):
right = mid - 1
else:
left = mid + 1
return left
def binarySearch3(self, compare, nums, target):
left, right = -1, len(nums)
while left + 1 < right:
mid = left + (right - left) / 2
if compare(nums[mid], target):
right = mid
else:
left = mid
return right
if __name__ == "__main__":
print Solution().searchRange([2, 2], 3)
print Solution().searchRange([5, 7, 7, 8, 8, 10], 8)