diff --git a/expe_both/kraken.log b/expe_both/kraken.log new file mode 100644 index 0000000..00893c4 --- /dev/null +++ b/expe_both/kraken.log @@ -0,0 +1,61 @@ +┏━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓ +┃ ┃ Name ┃ Type ┃ Params ┃ In sizes ┃ Out sizes ┃ +┡━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩ +│ 0 │ val_cer │ CharErrorRate │ 0 │ ? │ ? │ +│ 1 │ net │ MultiParamSequential │ 4.0 M │ [[1, 1, 120, 400], '?'] │ [[1, 121, 1, 50], '?'] │ +│ 2 │ net.C_0 │ ActConv2D │ 1.3 K │ [[1, 1, 120, 400], '?'] │ [[1, 32, 120, 400], '?'] │ +│ 3 │ net.Do_1 │ Dropout │ 0 │ [[1, 32, 120, 400], '?'] │ [[1, 32, 120, 400], '?'] │ +│ 4 │ net.Mp_2 │ MaxPool │ 0 │ [[1, 32, 120, 400], '?'] │ [[1, 32, 60, 200], '?'] │ +│ 5 │ net.C_3 │ ActConv2D │ 40.0 K │ [[1, 32, 60, 200], '?'] │ [[1, 32, 60, 200], '?'] │ +│ 6 │ net.Do_4 │ Dropout │ 0 │ [[1, 32, 60, 200], '?'] │ [[1, 32, 60, 200], '?'] │ +│ 7 │ net.Mp_5 │ MaxPool │ 0 │ [[1, 32, 60, 200], '?'] │ [[1, 32, 30, 100], '?'] │ +│ 8 │ net.C_6 │ ActConv2D │ 55.4 K │ [[1, 32, 30, 100], '?'] │ [[1, 64, 30, 100], '?'] │ +│ 9 │ net.Do_7 │ Dropout │ 0 │ [[1, 64, 30, 100], '?'] │ [[1, 64, 30, 100], '?'] │ +│ 10 │ net.Mp_8 │ MaxPool │ 0 │ [[1, 64, 30, 100], '?'] │ [[1, 64, 15, 50], '?'] │ +│ 11 │ net.C_9 │ ActConv2D │ 110 K │ [[1, 64, 15, 50], '?'] │ [[1, 64, 15, 50], '?'] │ +│ 12 │ net.Do_10 │ Dropout │ 0 │ [[1, 64, 15, 50], '?'] │ [[1, 64, 15, 50], '?'] │ +│ 13 │ net.S_11 │ Reshape │ 0 │ [[1, 64, 15, 50], '?'] │ [[1, 960, 1, 50], '?'] │ +│ 14 │ net.L_12 │ TransposedSummarizingRNN │ 1.9 M │ [[1, 960, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 15 │ net.Do_13 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 16 │ net.L_14 │ TransposedSummarizingRNN │ 963 K │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 17 │ net.Do_15 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 18 │ net.L_16 │ TransposedSummarizingRNN │ 963 K │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 19 │ net.Do_17 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 20 │ net.O_18 │ LinSoftmax │ 48.5 K │ [[1, 400, 1, 50], '?'] │ [[1, 121, 1, 50], '?'] │ +└────┴───────────┴──────────────────────────┴────────┴──────────────────────────┴──────────────────────────┘ +Trainable params: 4.0 M +Non-trainable params: 0 +Total params: 4.0 M +Total estimated model params size (MB): 16 +stage 0/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.82457 early_stopping: 0/10 0.82457 +stage 1/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.84399 early_stopping: 0/10 0.84399 +stage 2/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.84616 early_stopping: 0/10 0.84616 +stage 3/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.86558 early_stopping: 0/10 0.86558 +stage 4/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:39 val_accuracy: 0.86369 early_stopping: 1/10 0.86558 +stage 5/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89819 early_stopping: 0/10 0.89819 +stage 6/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89097 early_stopping: 1/10 0.89819 +stage 7/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89955 early_stopping: 0/10 0.89955 +stage 8/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:39 val_accuracy: 0.90316 early_stopping: 0/10 0.90316 +stage 9/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89892 early_stopping: 1/10 0.90316 +stage 10/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89205 early_stopping: 2/10 0.90316 +stage 11/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:41 val_accuracy: 0.88889 early_stopping: 3/10 0.90316 +stage 12/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90506 early_stopping: 0/10 0.90506 +stage 13/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91364 early_stopping: 0/10 0.91364 +stage 14/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90108 early_stopping: 1/10 0.91364 +stage 15/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90199 early_stopping: 2/10 0.91364 +stage 16/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90867 early_stopping: 3/10 0.91364 +stage 17/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91418 early_stopping: 0/10 0.91418 +stage 18/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90687 early_stopping: 1/10 0.91418 +stage 19/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.89494 early_stopping: 2/10 0.91418 +stage 20/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.92385 early_stopping: 0/10 0.92385 +stage 21/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90262 early_stopping: 1/10 0.92385 +stage 22/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90750 early_stopping: 2/10 0.92385 +stage 23/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91518 early_stopping: 3/10 0.92385 +stage 24/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90081 early_stopping: 4/10 0.92385 +stage 25/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91048 early_stopping: 5/10 0.92385 +stage 26/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91915 early_stopping: 6/10 0.92385 +stage 27/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90018 early_stopping: 7/10 0.92385 +stage 28/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90696 early_stopping: 8/10 0.92385 +stage 29/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.89756 early_stopping: 9/10 0.92385 +stage 30/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90903 early_stopping: 10/10 0.92385 +Moving best model /home/ROCQ/almanach/achague/peraire/peraire-ground-truth/models/peraire2_ft_MMCFR_20.mlmodel (0.9238482713699341) to /home/ROCQ/almanach/achague/peraire/peraire-ground-truth/models/peraire2_ft_MMCFR_best.mlmodel diff --git a/expe_both/kraken_B.log b/expe_both/kraken_B.log new file mode 100644 index 0000000..f36c15c --- /dev/null +++ b/expe_both/kraken_B.log @@ -0,0 +1,68 @@ +┏━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓ +┃ ┃ Name ┃ Type ┃ Params ┃ In sizes ┃ Out sizes ┃ +┡━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩ +│ 0 │ val_cer │ CharErrorRate │ 0 │ ? │ ? │ +│ 1 │ net │ MultiParamSequential │ 4.0 M │ [[1, 1, 120, 400], '?'] │ [[1, 102, 1, 50], '?'] │ +│ 2 │ net.C_0 │ ActConv2D │ 1.3 K │ [[1, 1, 120, 400], '?'] │ [[1, 32, 120, 400], '?'] │ +│ 3 │ net.Do_1 │ Dropout │ 0 │ [[1, 32, 120, 400], '?'] │ [[1, 32, 120, 400], '?'] │ +│ 4 │ net.Mp_2 │ MaxPool │ 0 │ [[1, 32, 120, 400], '?'] │ [[1, 32, 60, 200], '?'] │ +│ 5 │ net.C_3 │ ActConv2D │ 40.0 K │ [[1, 32, 60, 200], '?'] │ [[1, 32, 60, 200], '?'] │ +│ 6 │ net.Do_4 │ Dropout │ 0 │ [[1, 32, 60, 200], '?'] │ [[1, 32, 60, 200], '?'] │ +│ 7 │ net.Mp_5 │ MaxPool │ 0 │ [[1, 32, 60, 200], '?'] │ [[1, 32, 30, 100], '?'] │ +│ 8 │ net.C_6 │ ActConv2D │ 55.4 K │ [[1, 32, 30, 100], '?'] │ [[1, 64, 30, 100], '?'] │ +│ 9 │ net.Do_7 │ Dropout │ 0 │ [[1, 64, 30, 100], '?'] │ [[1, 64, 30, 100], '?'] │ +│ 10 │ net.Mp_8 │ MaxPool │ 0 │ [[1, 64, 30, 100], '?'] │ [[1, 64, 15, 50], '?'] │ +│ 11 │ net.C_9 │ ActConv2D │ 110 K │ [[1, 64, 15, 50], '?'] │ [[1, 64, 15, 50], '?'] │ +│ 12 │ net.Do_10 │ Dropout │ 0 │ [[1, 64, 15, 50], '?'] │ [[1, 64, 15, 50], '?'] │ +│ 13 │ net.S_11 │ Reshape │ 0 │ [[1, 64, 15, 50], '?'] │ [[1, 960, 1, 50], '?'] │ +│ 14 │ net.L_12 │ TransposedSummarizingRNN │ 1.9 M │ [[1, 960, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 15 │ net.Do_13 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 16 │ net.L_14 │ TransposedSummarizingRNN │ 963 K │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 17 │ net.Do_15 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 18 │ net.L_16 │ TransposedSummarizingRNN │ 963 K │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 19 │ net.Do_17 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 20 │ net.O_18 │ LinSoftmax │ 40.9 K │ [[1, 400, 1, 50], '?'] │ [[1, 102, 1, 50], '?'] │ +└────┴───────────┴──────────────────────────┴────────┴──────────────────────────┴──────────────────────────┘ +Trainable params: 4.0 M +Non-trainable params: 0 +Total params: 4.0 M +Total estimated model params size (MB): 16 +stage 0/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.84189 early_stopping: 0/10 0.84189 +stage 1/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:16 val_accuracy: 0.86503 early_stopping: 0/10 0.86503 +stage 2/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.85900 early_stopping: 1/10 0.86503 +stage 3/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.83225 early_stopping: 2/10 0.86503 +stage 4/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.84189 early_stopping: 3/10 0.86503 +stage 5/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.86430 early_stopping: 4/10 0.86503 +stage 6/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.89275 early_stopping: 0/10 0.89275 +stage 7/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.85900 early_stopping: 1/10 0.89275 +stage 8/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.88551 early_stopping: 2/10 0.89275 +stage 9/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.87539 early_stopping: 3/10 0.89275 +stage 10/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.85852 early_stopping: 4/10 0.89275 +stage 11/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.88286 early_stopping: 5/10 0.89275 +stage 12/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.89588 early_stopping: 0/10 0.89588 +stage 13/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.87033 early_stopping: 1/10 0.89588 +stage 14/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.89058 early_stopping: 2/10 0.89588 +stage 15/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.89467 early_stopping: 3/10 0.89588 +stage 16/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.87684 early_stopping: 4/10 0.89588 +stage 17/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.89998 early_stopping: 0/10 0.89998 +stage 18/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.90697 early_stopping: 0/10 0.90697 +stage 19/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.88407 early_stopping: 1/10 0.90697 +stage 20/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.87660 early_stopping: 2/10 0.90697 +stage 21/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.89034 early_stopping: 3/10 0.90697 +stage 22/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.90046 early_stopping: 4/10 0.90697 +stage 23/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.86961 early_stopping: 5/10 0.90697 +stage 24/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.91661 early_stopping: 0/10 0.91661 +stage 25/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.91275 early_stopping: 1/10 0.91661 +stage 26/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.91347 early_stopping: 2/10 0.91661 +stage 27/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.91685 early_stopping: 0/10 0.91685 +stage 28/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:16 val_accuracy: 0.91203 early_stopping: 1/10 0.91685 +stage 29/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.91130 early_stopping: 2/10 0.91685 +stage 30/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.90359 early_stopping: 3/10 0.91685 +stage 31/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.88961 early_stopping: 4/10 0.91685 +stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.90986 early_stopping: 5/10 0.91685 +stage 33/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.90793 early_stopping: 6/10 0.91685 +stage 34/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:16 val_accuracy: 0.90239 early_stopping: 7/10 0.91685 +stage 35/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.88792 early_stopping: 8/10 0.91685 +stage 36/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.91179 early_stopping: 9/10 0.91685 +stage 37/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 257/257 0:00:00 0:00:17 val_accuracy: 0.90721 early_stopping: 10/10 0.91685 +Moving best model /home/ROCQ/almanach/achague/peraire/peraire-ground-truth/models/peraireB_ft_MMCFR_27.mlmodel (0.9168474078178406) to /home/ROCQ/almanach/achague/peraire/peraire-ground-truth/models/peraireB_ft_MMCFR_best.mlmodel diff --git a/expe_both/kraken_D.log b/expe_both/kraken_D.log new file mode 100644 index 0000000..fc9a8cf --- /dev/null +++ b/expe_both/kraken_D.log @@ -0,0 +1,74 @@ +┏━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓ +┃ ┃ Name ┃ Type ┃ Params ┃ In sizes ┃ Out sizes ┃ +┡━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩ +│ 0 │ val_cer │ CharErrorRate │ 0 │ ? │ ? │ +│ 1 │ net │ MultiParamSequential │ 4.0 M │ [[1, 1, 120, 400], '?'] │ [[1, 117, 1, 50], '?'] │ +│ 2 │ net.C_0 │ ActConv2D │ 1.3 K │ [[1, 1, 120, 400], '?'] │ [[1, 32, 120, 400], '?'] │ +│ 3 │ net.Do_1 │ Dropout │ 0 │ [[1, 32, 120, 400], '?'] │ [[1, 32, 120, 400], '?'] │ +│ 4 │ net.Mp_2 │ MaxPool │ 0 │ [[1, 32, 120, 400], '?'] │ [[1, 32, 60, 200], '?'] │ +│ 5 │ net.C_3 │ ActConv2D │ 40.0 K │ [[1, 32, 60, 200], '?'] │ [[1, 32, 60, 200], '?'] │ +│ 6 │ net.Do_4 │ Dropout │ 0 │ [[1, 32, 60, 200], '?'] │ [[1, 32, 60, 200], '?'] │ +│ 7 │ net.Mp_5 │ MaxPool │ 0 │ [[1, 32, 60, 200], '?'] │ [[1, 32, 30, 100], '?'] │ +│ 8 │ net.C_6 │ ActConv2D │ 55.4 K │ [[1, 32, 30, 100], '?'] │ [[1, 64, 30, 100], '?'] │ +│ 9 │ net.Do_7 │ Dropout │ 0 │ [[1, 64, 30, 100], '?'] │ [[1, 64, 30, 100], '?'] │ +│ 10 │ net.Mp_8 │ MaxPool │ 0 │ [[1, 64, 30, 100], '?'] │ [[1, 64, 15, 50], '?'] │ +│ 11 │ net.C_9 │ ActConv2D │ 110 K │ [[1, 64, 15, 50], '?'] │ [[1, 64, 15, 50], '?'] │ +│ 12 │ net.Do_10 │ Dropout │ 0 │ [[1, 64, 15, 50], '?'] │ [[1, 64, 15, 50], '?'] │ +│ 13 │ net.S_11 │ Reshape │ 0 │ [[1, 64, 15, 50], '?'] │ [[1, 960, 1, 50], '?'] │ +│ 14 │ net.L_12 │ TransposedSummarizingRNN │ 1.9 M │ [[1, 960, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 15 │ net.Do_13 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 16 │ net.L_14 │ TransposedSummarizingRNN │ 963 K │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 17 │ net.Do_15 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 18 │ net.L_16 │ TransposedSummarizingRNN │ 963 K │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 19 │ net.Do_17 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ +│ 20 │ net.O_18 │ LinSoftmax │ 46.9 K │ [[1, 400, 1, 50], '?'] │ [[1, 117, 1, 50], '?'] │ +└────┴───────────┴──────────────────────────┴────────┴──────────────────────────┴──────────────────────────┘ +Trainable params: 4.0 M +Non-trainable params: 0 +Total params: 4.0 M +Total estimated model params size (MB): 16 +stage 0/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.87184 early_stopping: 0/10 0.87184 +stage 1/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.87122 early_stopping: 1/10 0.87184 +stage 2/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.87906 early_stopping: 0/10 0.87906 +stage 3/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.90494 early_stopping: 0/10 0.90494 +stage 4/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.90353 early_stopping: 1/10 0.90494 +stage 5/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.91655 early_stopping: 0/10 0.91655 +stage 6/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.92329 early_stopping: 0/10 0.92329 +stage 7/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.88220 early_stopping: 1/10 0.92329 +stage 8/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.89725 early_stopping: 2/10 0.92329 +stage 9/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.91122 early_stopping: 3/10 0.92329 +stage 10/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.92816 early_stopping: 0/10 0.92816 +stage 11/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.93349 early_stopping: 0/10 0.93349 +stage 12/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.92016 early_stopping: 1/10 0.93349 +stage 13/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.90761 early_stopping: 2/10 0.93349 +stage 14/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.93725 early_stopping: 0/10 0.93725 +stage 15/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.91655 early_stopping: 1/10 0.93725 +stage 16/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.90839 early_stopping: 2/10 0.93725 +stage 17/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.93412 early_stopping: 3/10 0.93725 +stage 18/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.91545 early_stopping: 4/10 0.93725 +stage 19/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.91294 early_stopping: 5/10 0.93725 +stage 20/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.91467 early_stopping: 6/10 0.93725 +stage 21/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.90855 early_stopping: 7/10 0.93725 +stage 22/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.92251 early_stopping: 8/10 0.93725 +stage 23/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.92329 early_stopping: 9/10 0.93725 +stage 24/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.93898 early_stopping: 0/10 0.93898 +stage 25/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.94729 early_stopping: 0/10 0.94729 +stage 26/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.94259 early_stopping: 1/10 0.94729 +stage 27/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.92518 early_stopping: 2/10 0.94729 +stage 28/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.92941 early_stopping: 3/10 0.94729 +stage 29/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.92329 early_stopping: 4/10 0.94729 +stage 30/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.93443 early_stopping: 5/10 0.94729 +stage 31/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.92659 early_stopping: 6/10 0.94729 +stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.93239 early_stopping: 7/10 0.94729 +stage 33/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.95435 early_stopping: 0/10 0.95435 +stage 34/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.93067 early_stopping: 1/10 0.95435 +stage 35/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.94290 early_stopping: 2/10 0.95435 +stage 36/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.93522 early_stopping: 3/10 0.95435 +stage 37/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.94165 early_stopping: 4/10 0.95435 +stage 38/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:26 val_accuracy: 0.92988 early_stopping: 5/10 0.95435 +stage 39/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.95263 early_stopping: 6/10 0.95435 +stage 40/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.94463 early_stopping: 7/10 0.95435 +stage 41/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.93537 early_stopping: 8/10 0.95435 +stage 42/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.92533 early_stopping: 9/10 0.95435 +stage 43/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 313/313 0:00:00 0:00:25 val_accuracy: 0.90808 early_stopping: 10/10 0.95435 +Moving best model /home/ROCQ/almanach/achague/peraire/peraire-ground-truth/models/peraireD_ft_MMCFR_33.mlmodel (0.9543529152870178) to /home/ROCQ/almanach/achague/peraire/peraire-ground-truth/models/peraireD_ft_MMCFR_best.mlmodel diff --git a/expe_both/readme.md b/expe_both/readme.md new file mode 100644 index 0000000..0fbf7b8 --- /dev/null +++ b/expe_both/readme.md @@ -0,0 +1,268 @@ +`Peraire_ft_MMCFR` was trained finetuning the `Manu McFrench` model with the data stored in data/train/ using the eScriptorium web application and Kraken v. 3.0.13. + + +`Peraire_ft_MMCFR` accuracy during training is 93.0%. It reaches an accuracy of 93.3% in the test files. + +## KaMI-App evaluation + +> (ran on August 12 with kamilib 0.1.1-light) + +|FIELD1 |Default|Ignoring digits|Ignoring case|Ignoring punctuation|Ignoring diacritics|Combining all options| +|--------------------------------------|-------|---------------|-------------|--------------------|-------------------|---------------------| +|Levensthein Distance (Char.) |378 |373 |373 |319 |336 |266 | +|Levensthein Distance (Words) |256 |251 |252 |211 |227 |169 | +|Hamming Distance |Ø |Ø |Ø |Ø |Ø |Ø | +|Word Error Rate (WER in %) |26.947 |26.873 |26.526 |22.542 |23.894 |18.51 | +|Char. Error Rate (CER in %) |6.723 |6.731 |6.634 |5.909 |6.095 |5.108 | +|Word Accuracy (Wacc in %) |73.052 |73.126 |73.473 |77.457 |76.105 |81.489 | +|Match Error Rate (MER in %) |6.645 |6.652 |6.557 |5.853 |6.031 |5.065 | +|Char. Information Lost (CIL in %) |10.52 |10.45 |10.352 |9.328 |9.863 |8.327 | +|Char. Information Preserved (CIP in %)|89.479 |89.549 |89.647 |90.671 |90.136 |91.672 | +|Hits |5310 |5234 |5315 |5131 |5235 |4985 | +|Substitutions |229 |221 |224 |196 |222 |177 | +|Deletions |83 |86 |83 |71 |55 |45 | +|Insertions |66 |66 |66 |52 |59 |44 | +|Total char. in reference |5622 |5541 |5622 |5398 |5512 |5207 | +|Total char. in prediction |5605 |5521 |5605 |5379 |5516 |5206 | + + +