forked from CMU-HoTT/serre-finiteness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOutline.agda
237 lines (183 loc) · 9.46 KB
/
Outline.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
module Outline where
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Group.EilenbergMacLane.Base
open import Cubical.Data.Nat
open import Cubical.Data.NatMinusOne
open import Cubical.Data.Nat.Order
open import Cubical.Foundations.Everything
open import Cubical.Homotopy.Connected
open import Cubical.Homotopy.Group.Base
open import Cubical.Homotopy.Loopspace
open import Cubical.HITs.Join
open import Cubical.HITs.PropositionalTruncation
open import Cubical.HITs.Pushout
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp
private
variable
ℓ : Level
-- Generalities
join∙ : Pointed ℓ → Pointed ℓ → Pointed ℓ
join∙ ( A , a ) ( B , b ) = ( join A B , inl a )
-- Σ and Σ∙ are taken
S∙ : Pointed ℓ → Pointed ℓ
S∙ A = Susp∙ (typ A)
S∙→ : {X Y : Pointed ℓ} → (X →∙ Y) → (S∙ X →∙ S∙ Y)
S∙→ f = suspFun (fst f) , refl
S¹∙ : Pointed _
S¹∙ = ( S¹ , base )
postulate
-- Essentially proven as EH-π in Cubical.Homotopy.Loopspace
πGr-comm : (n : ℕ) (A : Pointed ℓ) → (a b : typ (πGr (suc n) A))
→ ·π (suc n) a b ≡ ·π (suc n) b a
-- πAb n A = πₙ₊₂(A), as an abelian group
πAb : (n : ℕ) (A : Pointed ℓ) → AbGroup ℓ
πAb n A = Group→AbGroup (πGr (1 + n) A) (πGr-comm n A)
postulate
CofiberSeq : Pointed ℓ → Pointed ℓ → Pointed ℓ → Type ℓ
-- CofiberSeq A B C = Σ[ f ∈ A →∙ B ] Σ[ g ∈ B →∙ C ] Σ[ h ∈ g ∘∙ f = const∙ A C ], ...
-- Probably use a record.
copuppe : {A B C : Pointed ℓ} → CofiberSeq A B C → CofiberSeq B C (S∙ A)
FiberSeq : Pointed ℓ → Pointed ℓ → Pointed ℓ → Type ℓ
-- likewise
puppe : {X Y Z : Pointed ℓ} → FiberSeq X Y Z → FiberSeq (Ω Z) X Y
-- finitely presented abelian groups
postulate
isFP : AbGroup ℓ → Type ℓ
isFP-prop : {A : AbGroup ℓ} → isProp (isFP A)
-- connectivity facts
postulate
isConnectedFunCancel : {X Y Z : Type ℓ} (f : X → Y) (g : Y → Z) (n : HLevel)
→ isConnectedFun n f → isConnectedFun (1 + n) (g ∘ f) → isConnectedFun (1 + n) g
isConnectedFunCancel' : {X Y Z : Type ℓ} (f : X → Y) (g : Y → Z) (n : HLevel)
→ isConnectedFun (1 + n) g → isConnectedFun n (g ∘ f) → isConnectedFun n f
-- As in 3×3 lemma for pushouts
Pushout→ : {X₀ X₁ X₂ Y₀ Y₁ Y₂ : Type ℓ}
(f₁ : X₀ → X₁) (f₂ : X₀ → X₂) (g₁ : Y₀ → Y₁) (g₂ : Y₀ → Y₂)
(h₀ : X₀ → Y₀) (h₁ : X₁ → Y₁) (h₂ : X₂ → Y₂)
(e₁ : h₁ ∘ f₁ ≡ g₁ ∘ h₀) (e₂ : h₂ ∘ f₂ ≡ g₂ ∘ h₀)
→ Pushout f₁ f₂ → Pushout g₁ g₂
isConnectedFunPushout : {X₀ X₁ X₂ Y₀ Y₁ Y₂ : Type ℓ}
(f₁ : X₀ → X₁) (f₂ : X₀ → X₂) (g₁ : Y₀ → Y₁) (g₂ : Y₀ → Y₂)
(h₀ : X₀ → Y₀) (h₁ : X₁ → Y₁) (h₂ : X₂ → Y₂)
(e₁ : h₁ ∘ f₁ ≡ g₁ ∘ h₀) (e₂ : h₂ ∘ f₂ ≡ g₂ ∘ h₀)
(n : HLevel)
→ isConnectedFun n h₀ → isConnectedFun (1 + n) h₁ → isConnectedFun (1 + n) h₂
→ isConnectedFun (1 + n) (Pushout→ f₁ f₂ g₁ g₂ h₀ h₁ h₂ e₁ e₂)
isConnectedFunJoin : {X₁ Y₁ X₂ Y₂ : Type ℓ} (f₁ : X₁ → Y₁) (f₂ : X₂ → Y₂)
(n₁ n₂ m₁ m₂ : HLevel)
(k : HLevel) (hk₁ : n₁ + m₂ ≤ k) (hk₂ : m₁ + n₂ ≤ k)
→ isConnectedFun n₁ f₁ → isConnectedFun n₂ f₂
→ isConnected m₁ Y₁ → isConnected m₂ Y₂
→ isConnectedFun k (join→ f₁ f₂)
isConnectedFunS∙ : {X Y : Pointed ℓ} (f : X →∙ Y) (n : HLevel)
→ isConnectedFun n (fst f)
→ isConnectedFun n (fst (S∙→ f))
wlp : {A B X Y : Type ℓ} (f : A → B) (g : X → Y) → Type ℓ
-- wlp f g = ∀ (h : A → X) (k : B → Y) (e : h ∘ g ≡ k ∘ f), ∥ Σ ... ∥₁
wlp-isProp : {A B X Y : Type ℓ} {f : A → B} {g : X → Y} → isProp (wlp f g)
liftCell : {X Y : Type ℓ} (f : X → Y) (n : HLevel) (hf : isConnectedFun n f)
(m : ℕ₋₁) (hm : 1+ m < n) → wlp (λ (_ : Lift (S m)) → lift tt) f
-- finite CW complexes
postulate
-- The type of "finite CW complex structures".
-- We need to expose this separately from `isFinCW`
-- if we want to define e.g. `nFinite n X` as a *small* proposition.
-- (Possibly we don't really care.)
FinCW : (ℓ : Level) → Type ℓ
decodeFinCW : FinCW ℓ → Type ℓ
isFinCW : Type ℓ → Type ℓ
isFinCW-isProp : {X : Type ℓ} → isProp (isFinCW X)
isFinCW-def : {X : Type ℓ} → isFinCW X ≃ ∥ Σ[ C ∈ FinCW ℓ ] X ≡ decodeFinCW C ∥₁
-- closure under pushouts, products, etc.
isFinCWUnit : isFinCW (Unit* {ℓ = ℓ})
isFinCWSn : {n : ℕ} → isFinCW (S₊ n)
isFinCWPushout : {X Y Z : Type ℓ} (f : X → Y) (g : X → Z)
→ isFinCW X → isFinCW Y → isFinCW Z → isFinCW (Pushout f g)
isFinCWJoin : {X Y : Type ℓ} → isFinCW X → isFinCW Y → isFinCW (join X Y)
-- Suggestion on the use of `HLevel`s:
-- following the lead of `πGr`, `isConnected`, etc.,
-- use `0 : HLevel` for the smallest meaningful value.
-- In this case, the smallest meaningful value is -1 and so
-- `isNDimFinCW n X` = "X is a finite (n-1)-dimensional CW complex".
isNDimFinCW : HLevel → Type ℓ → Type ℓ
isNDimFinCW-isProp : {n : HLevel} {X : Type ℓ} → isProp (isNDimFinCW n X)
-- "Obstruction theory".
liftFromNDimFinCW : (n : HLevel) (X : Type ℓ) (hX : isNDimFinCW n X)
{Y Z : Type ℓ} (f : Y → Z) (hf : isConnectedFun (2 + n) f) (g : X → Z)
→ ∥ Σ[ l ∈ (X → Y) ] f ∘ l ≡ g ∥₁
mapFromNSkel : (X : Type ℓ) (hX : isFinCW X) (n : HLevel)
→ ∥ Σ[ Y ∈ Type ℓ ] Σ[ hY ∈ isNDimFinCW n Y ] Σ[ f ∈ (X → Y) ] isConnectedFun n f ∥₁
-- stably almost finite spaces
postulate
-- (n-1)-finite, perhaps?
nFinite : HLevel → Type ℓ → Type ℓ
-- nFinite {ℓ} n X = ∥ Σ[ C ∈ FinCW ℓ ] Σ[ f ∈ (decodeFinCW C → X) ] isConnectedFun n f ∥₁
nFinite-isProp : {n : HLevel} {X : Type ℓ} → isProp (nFinite n X)
stablyNFinite : HLevel → Pointed ℓ → Type ℓ
stablyNFinite-isProp : {n : HLevel} {X : Pointed ℓ} → isProp (stablyNFinite n X)
saf : Pointed ℓ → Type ℓ
saf-isProp : {X : Pointed ℓ} → isProp (saf X)
isFinCW→saf : {X : Pointed ℓ} → isFinCW (typ X) → saf X
stablyNFiniteOfSusp : (n : HLevel) (A : Pointed ℓ)
→ stablyNFinite (suc n) (S∙ A) → stablyNFinite n A
stablyNFiniteExtension : {n : HLevel} {A B C : Pointed ℓ} (S : CofiberSeq A B C)
→ stablyNFinite n A → stablyNFinite n C → stablyNFinite n B
safCofiber : {A B C : Pointed ℓ} → CofiberSeq A B C
→ saf A → saf B → saf C
safExtension : {A B C : Pointed ℓ} → CofiberSeq A B C
→ saf A → saf C → saf B
safS¹× : {A : Pointed ℓ} → saf A → saf (S¹∙ ×∙ A)
-- TODO: Most likely the inequalities on `k` are not quite right
stablyNFiniteJoin : {X₁ X₂ : Pointed ℓ} (m₁ n₁ m₂ n₂ : HLevel)
(hXm₁ : isConnected m₁ (typ X₁)) (hXn₁ : stablyNFinite n₁ X₁)
(hXm₂ : isConnected m₂ (typ X₂)) (hXn₂ : stablyNFinite n₂ X₂)
(k : HLevel) (hk₁ : n₁ + m₂ ≤ k) (hk₂ : m₁ + n₂ ≤ k)
→ stablyNFinite k (join∙ X₁ X₂)
stablyNFiniteApprox : {X Y : Pointed ℓ} (f : X →∙ Y)
(n : HLevel) (hf : isConnectedFun n (fst f))
→ stablyNFinite (1 + n) X → stablyNFinite n Y
stablyNFiniteApprox' : {X Y : Pointed ℓ} (f : X →∙ Y)
(n : HLevel) (hf : isConnectedFun n (fst f))
→ stablyNFinite n Y → stablyNFinite n X
postulate
-- Bottom homotopy groups, e.g.,
-- if n = 0 we are talking about π₂(X),
-- and X must be simply connected = 1-connected.
isFinCW→isFPBottomπ : (X : Pointed ℓ) (hX : isFinCW (typ X))
(n : ℕ) (cX : isConnected (3 + n) (typ X))
→ isFP (πAb n X)
-- Could weaken hypothesis to stablyNFinite n X (or so).
saf→isFPBottomπ : (X : Pointed ℓ) (hX : saf X)
(n : ℕ) (cX : isConnected (3 + n) (typ X))
→ isFP (πAb n X)
saf→Conn→isFPπ : (X : Pointed ℓ) (hX : saf X)
(n : ℕ) (cX : isConnected (suc (suc n)) (typ X))
→ isFP (πAb n X)
postulate
safΩ→saf : {B : Pointed ℓ} (cB : isConnected 2 (typ B)) → saf (Ω B) → saf B
saf→safΩ : {B : Pointed ℓ} (scB : isConnected 3 (typ B)) → saf B → saf (Ω B)
safTotal : {F E B : Pointed ℓ} (S : FiberSeq F E B) (scB : isConnected 3 (typ B))
→ saf B → saf F → saf E
postulate
isFP→safEM : (A : AbGroup ℓ) (fpA : isFP A) (n : ℕ)
→ saf (EM∙ A (suc n))
postulate
-- n+3 (or n+1, depending on the convention) connected cover
_⦉_⦊ : (X : Pointed ℓ) → ℕ → Pointed ℓ
1ConnCovEq : (X : Pointed ℓ) (scX : isConnected 3 (typ X))
→ X ≡ (X ⦉ 0 ⦊)
Conn→ConnConnCov : (X : Pointed ℓ) (m n : ℕ)
→ isConnected m (typ X) → isConnected m (typ (X ⦉ n ⦊))
ConnCovIsConn : (X : Pointed ℓ) (n : ℕ)
→ isConnected (3 + n) (typ (X ⦉ n ⦊))
πConnCov : (X : Pointed ℓ) (n k : ℕ) → k ≥ n
→ (πAb (suc k) (X ⦉ n ⦊)) ≡ (πAb (suc k) X)
⦉-⦊EMFibSeq : (X : Pointed ℓ) (n : ℕ)
→ FiberSeq (EM∙ (πAb n X) (suc n)) (X ⦉ (suc n) ⦊) (X ⦉ n ⦊)
postulate
saf→isFPπ : (X : Pointed ℓ) (safX : saf X) (scX : isConnected 3 (typ X)) (n : ℕ)
→ isFP (πAb n X)
saf→saf⦉-⦊ : (X : Pointed ℓ) (safX : saf X) (scX : isConnected 3 (typ X)) (n : ℕ)
→ saf (X ⦉ n ⦊)