-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
73 lines (51 loc) · 2.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# MIT License
# Copyright (c) 2021 alxyok
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import numpy as np
# no condition, no loop, pure matrix.
def grid_2d_connectivity_matrix(shape: tuple) -> np.ndarray:
x_dim, y_dim = shape
array = np.reshape(np.arange(x_dim * y_dim), (x_dim, y_dim))
columnar = (-1, 1)
left = np.reshape(arr[..., :-1], columnar)
right = np.reshape(arr[..., 1:], columnar)
up = np.reshape(arr[:-1, ...], columnar)
left = np.reshape(arr[1:, ...], columnar)
connectivity = np.concatenate(
(np.hstack((left, right)),
np.hstack((right, left)),
np.hstack((up, down)),
np.hstack((down, up))),)
return connectivity
def grid_3d_connectivity_matrix(shape: tuple) -> np.ndarray:
x_dim, y_dim, z_dim = shape
array = np.reshape(np.arange(x_dim * y_dim * z_dim), (x_dim, y_dim, z_dim))
columnar = (-1, 1)
left = np.reshape(array[..., :-1], columnar)
right = np.reshape(array[..., 1:], columnar)
up = np.reshape(array[:, :-1, :], columnar)
down = np.reshape(array[:, 1:, :], columnar)
sup = np.reshape(array[1:, ...], columnar)
inf = np.reshape(array[:-1, ...], columnar)
connectivity = np.concatenate(
(np.hstack((left, right)),
np.hstack((right, left)),
np.hstack((up, down)),
np.hstack((down, up)),
np.hstack((sup, inf)),
np.hstack((inf, sup))),)
return connectivity