-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathOld_Paper_Algos.py
81 lines (65 loc) · 2.3 KB
/
Old_Paper_Algos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score,f1_score
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn import svm
import pandas as pd
import csv
from Confuse import main
sum = 0.0
X = pd.read_csv('Data/Train/Train_Combine.csv', usecols=[
'T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM'])
Y = pd.read_csv('Data/Train/Train_Combine.csv', usecols=['PM 2.5'])
X = X.values
Y = Y.values
X2 = pd.read_csv('Data/Test/Test_Combine.csv', usecols=[
'T', 'TM', 'Tm', 'SLP', 'H', 'VV', 'V', 'VM'])
Y2 = pd.read_csv('Data/Test/Test_Combine.csv', usecols=['PM 2.5'])
X2 = X2.values
Y2 = Y2.values
c = []
for a in Y:
for b in a:
c.append(b)
clf = svm.SVC()
clf.fit(X, c)
preds = clf.predict(X2)
print "*********SVM***************"
print "Precision : ", precision_score(Y2,preds, average='binary')
print "Recall : ", recall_score(Y2,preds, average='binary')
print "F-Measure : ", f1_score(Y2,preds,average='binary')
a = confusion_matrix(Y2, preds)
for i in xrange(len(a)):
for j in xrange(len(a)):
if i == j:
sum += a[i][j]
print "Accuracy : ", (sum / len(Y2)) * 100
sum = 0.0
# **********************************************************************
abc = LogisticRegression()
abc.fit(X, c)
pred = abc.predict(X2)
print "*********Logistic Regression***************"
print "Precision : ", precision_score(Y2,pred, average='binary')
print "Recall : ", recall_score(Y2,pred, average='binary')
print "F-Measure : ", f1_score(Y2,pred,average='binary')
b = confusion_matrix(Y2, pred)
for i in xrange(len(b)):
for j in xrange(len(b)):
if i == j:
sum += b[i][j]
print "Accuracy : ", (sum / len(Y2)) * 100
sum = 0.0
# **********************************************************************
gnb = GaussianNB()
gnb.fit(X, c)
pred = gnb.predict(X2)
print "*********Naive Bayes***************"
print "Precision : ", precision_score(Y2,pred, average='binary')
print "Recall : ", recall_score(Y2,pred, average='binary')
print "F-Measure : ", f1_score(Y2,pred,average='binary')
c = confusion_matrix(Y2, pred)
for i in xrange(len(c)):
for j in xrange(len(c)):
if i == j:
sum += c[i][j]
print "Accuracy : ", (sum / len(Y2)) * 100