-
Notifications
You must be signed in to change notification settings - Fork 23
/
demo.py
156 lines (128 loc) · 3.65 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import cv2 as cv
import numpy as np
import scipy
import math
import os
import sys
import matplotlib
import pylab as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import face_alignment
import vrn_unguided
### initial
enable_cuda = True
#
FA = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, enable_cuda=False, flip_input=False)
#
VRN = vrn_unguided.vrn_unguided
VRN.load_state_dict(torch.load('models/vrn_unguided.pth'))
if enable_cuda:
VRN.cuda()
### get landmarks from test image
image_file = 'examples/star-1.jpg'
image = cv.imread(image_file)
try:
image_height, image_width, image_depth = image.shape
except:
print('cannot load image:', image_file)
#
preds = FA.get_landmarks(image)
print len(preds)
### landmarks vis
canvas = image.copy()
minX=1000
maxX=0
minY=1000
maxY=0
for var in preds[0]:
if minX > var[0]:
minX = var[0]
if maxX < var[0]:
maxX = var[0]
if minY > var[1]:
minY = var[1]
if maxY < var[1]:
maxY = var[1]
cv.circle(canvas, (var[0], var[1]), 4, [128, 0, 255], thickness=-1)
#
plt.imshow(canvas[:,:,[2,1,0]])
### crop face image
scale=90/math.sqrt((minX-maxX)*(minY-maxY))
width=maxX-minX
height=maxY-minY
cenX=width/2
cenY=height/2
x= int( (minX+cenX)*scale )
y= int( (minY+cenY)*scale )
#print x,y,scale
resized_image = cv.resize(image, (0,0), fx=scale, fy=scale, interpolation=cv.INTER_CUBIC)
rh,rw,rc = resized_image.shape
#
crop_width = 192
crop_height = 192
left = 0
top = 0
right = 0
bottom = 0
cx = x
cy = y
if x < crop_width/2:
left = crop_width/2 - x
cx = x + left
if y < crop_height/2:
top = crop_height/2 - y
cy = y + top
if rw - x < crop_width/2:
right = crop_width/2 + x - rw;
if rh - y < crop_height/2:
bottom = crop_height/2 + y - rh
#
crop_image = cv.copyMakeBorder(resized_image,top, bottom, left, right,cv.BORDER_REFLECT)
crop_image = crop_image[cy-crop_height/2:cy+crop_height/2, cx-crop_width/2:cx+crop_width/2, :]
plt.imshow(crop_image[:,:,[2,1,0]])
### vrn output
inp = torch.from_numpy(crop_image.transpose((2, 0, 1))).float().unsqueeze_(0)
if enable_cuda:
inp = inp.cuda()
out = VRN(Variable(inp, volatile=True))[-1].data.cpu()
print(out.shape)
### save to obj file
import mcubes
from sklearn.neighbors import NearestNeighbors
im = crop_image[:,:,[2,1,0]] #RGB
vol = out.numpy()
vol = vol.reshape((200,192,192))*255.0
vol = vol.astype(float)
vertices, triangles = mcubes.marching_cubes(vol, 10)
vertices = vertices[:,(2,1,0)]
vertices[:,2] *= 0.5 # scale the Z component correctly
r = im[:,:,0].flatten()
g = im[:,:,1].flatten()
b = im[:,:,2].flatten()
vcx,vcy = np.meshgrid(np.arange(0,192),np.arange(0,192))
vcx = vcx.flatten()
vcy = vcy.flatten()
vc = np.vstack((vcx, vcy, r, g, b)).transpose()
neigh = NearestNeighbors(n_neighbors=1)
neigh.fit(vc[:,:2])
n = neigh.kneighbors(vertices[:,(0,1)], return_distance=False)
colour = vc[n,2:].reshape((vertices.shape[0],3)).astype(float) / 255
vc = np.hstack((vertices, colour))
obj_file = 'output.obj'
with open(obj_file, 'w') as f:
for v in range(0,vc.shape[0]):
f.write('v %0.2f %0.2f %0.2f %0.2f %0.2f %0.2f\n' % (vc[v,0],vc[v,1],vc[v,2],vc[v,3],vc[v,4],vc[v,5]))
for t in range(0,triangles.shape[0]):
f.write('f {} {} {}\n'.format(*triangles[t,:]+1))
print('Calculated the isosurface, save at obj file:',obj_file)
### plot 3d mesh
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
verts, faces = mcubes.marching_cubes(vol, 10)
ax.plot_trisurf(verts[:, 0], verts[:, 1], faces, verts[:, 2],
cmap='Spectral', lw=1)