diff --git a/docs/docs/blog/01_cf.md b/docs/docs/blog/01_cf.md
index 86faef5..ceae2ef 100644
--- a/docs/docs/blog/01_cf.md
+++ b/docs/docs/blog/01_cf.md
@@ -33,6 +33,13 @@ replaced by a computation graph of variables and operations, and rows are
```python
+# for Google Colab
+try:
+ import google.colab
+ !pip install git+https://github.com/amakelov/mandala
+except:
+ pass
+
from mandala.imports import *
@op(output_names=['y'])
@@ -67,10 +74,10 @@ print(cf.df().to_markdown())
| | x | increment | y | add | w |
|---:|----:|:--------------------------------------------|----:|:--------------------------------------|----:|
| 0 | 1 | Call(increment, cid='948...', hid='6e2...') | 2 | | nan |
- | 1 | 0 | Call(increment, cid='d47...', hid='230...') | 1 | Call(add, cid='89c...', hid='247...') | 1 |
- | 2 | 2 | Call(increment, cid='bfb...', hid='5dd...') | 3 | Call(add, cid='a81...', hid='626...') | 5 |
- | 3 | 4 | Call(increment, cid='928...', hid='adf...') | 5 | Call(add, cid='a54...', hid='deb...') | 9 |
- | 4 | 3 | Call(increment, cid='9b4...', hid='df2...') | 4 | | nan |
+ | 1 | 4 | Call(increment, cid='928...', hid='adf...') | 5 | Call(add, cid='a54...', hid='deb...') | 9 |
+ | 2 | 3 | Call(increment, cid='9b4...', hid='df2...') | 4 | | nan |
+ | 3 | 0 | Call(increment, cid='d47...', hid='230...') | 1 | Call(add, cid='89c...', hid='247...') | 1 |
+ | 4 | 2 | Call(increment, cid='bfb...', hid='5dd...') | 3 | Call(add, cid='a81...', hid='626...') | 5 |
This small example illustrates the main components of the CF workflow:
@@ -249,10 +256,10 @@ print(cf.df()[['accuracy', 'scale_data', 'train_svc', 'train_random_forest']].so
| | accuracy | scale_data | train_svc | train_random_forest |
|---:|-----------:|:---------------------------------------------|:--------------------------------------------|:------------------------------------------------------|
- | 1 | 0.915 | Call(scale_data, cid='09f...', hid='d6b...') | | Call(train_random_forest, cid='e26...', hid='c42...') |
+ | 2 | 0.915 | Call(scale_data, cid='09f...', hid='d6b...') | | Call(train_random_forest, cid='e26...', hid='c42...') |
| 3 | 0.885 | | | Call(train_random_forest, cid='519...', hid='997...') |
- | 0 | 0.82 | Call(scale_data, cid='09f...', hid='d6b...') | Call(train_svc, cid='6f4...', hid='7d9...') | |
- | 2 | 0.82 | | Call(train_svc, cid='ddf...', hid='6a0...') | |
+ | 0 | 0.82 | | Call(train_svc, cid='ddf...', hid='6a0...') | |
+ | 1 | 0.82 | Call(scale_data, cid='09f...', hid='d6b...') | Call(train_svc, cid='6f4...', hid='7d9...') | |
So is this the full story of this dataset? We might want to investigate further
@@ -363,20 +370,20 @@ print(cf.df()[['n_estimators', 'kernel', 'accuracy', ]].sort_values('accuracy',
| | n_estimators | kernel | accuracy |
|---:|:-----------------------------|:-------------------------------------------|-----------:|
- | 1 | | rbf | 0.915 |
- | 5 | 5 | | 0.915 |
- | 9 | | rbf | 0.91 |
- | 2 | 20 | | 0.9 |
- | 4 | 10 | | 0.9 |
- | 6 | 10 | | 0.9 |
- | 7 | 20 | | 0.9 |
- | 0 | ValueCollection([20, 10, 5]) | ValueCollection(['linear', 'rbf', 'poly']) | 0.895 |
- | 11 | ValueCollection([20, 10, 5]) | ValueCollection(['linear', 'rbf', 'poly']) | 0.895 |
- | 13 | 5 | | 0.885 |
- | 10 | | poly | 0.835 |
- | 3 | | linear | 0.82 |
- | 8 | | linear | 0.82 |
- | 12 | | poly | 0.82 |
+ | 2 | 5 | | 0.915 |
+ | 11 | | rbf | 0.915 |
+ | 13 | | rbf | 0.91 |
+ | 0 | 10 | | 0.9 |
+ | 3 | 10 | | 0.9 |
+ | 6 | 20 | | 0.9 |
+ | 9 | 20 | | 0.9 |
+ | 8 | ValueCollection([20, 10, 5]) | ValueCollection(['linear', 'rbf', 'poly']) | 0.895 |
+ | 12 | ValueCollection([20, 10, 5]) | ValueCollection(['linear', 'rbf', 'poly']) | 0.895 |
+ | 4 | 5 | | 0.885 |
+ | 1 | | poly | 0.835 |
+ | 5 | | poly | 0.82 |
+ | 7 | | linear | 0.82 |
+ | 10 | | linear | 0.82 |
Columns where `n_estimators` is `None` correspond to the SVC models, and columns
diff --git a/docs/docs/blog/01_cf_files/01_cf_10_0.svg b/docs/docs/blog/01_cf_files/01_cf_10_0.svg
index 66be8d7..bd7769b 100644
--- a/docs/docs/blog/01_cf_files/01_cf_10_0.svg
+++ b/docs/docs/blog/01_cf_files/01_cf_10_0.svg
@@ -9,11 +9,11 @@
G
-
+
-y_test
+X_train
-y_test
+X_train
2 values (2 sinks)
@@ -23,24 +23,8 @@
X
2 values
-
-
-scale_data
-
-scale_data
-@op:scale_data
-1 calls
-
-
-
-X->scale_data
-
-
-X
-(1 values)
-
-
+
get_train_test_split
get_train_test_split
@@ -55,15 +39,45 @@
X
(2 values)
-
+
+
+scale_data
+
+scale_data
+@op:scale_data
+1 calls
+
+
+
+X->scale_data
+
+
+X
+(1 values)
+
+
-X_test
+y_train
-X_test
+y_train
2 values (2 sinks)
-
+
+X_test
+
+X_test
+2 values (2 sinks)
+
+
+
+y_test
+
+y_test
+2 values (2 sinks)
+
+
+
y
y
@@ -77,30 +91,8 @@
y
(1 values)
-
-
-X_train
-
-X_train
-2 values (2 sinks)
-
-
-
-y_train
-
-y_train
-2 values (2 sinks)
-
-
-
-scale_data->X
-
-
-X_scaled
-(1 values)
-
-
+
get_data
get_data
@@ -123,37 +115,45 @@
y
(1 values)
-
-
-get_train_test_split->y_test
-
-
-y_test
-(2 values)
-
-
-
-get_train_test_split->X_test
-
-
-X_test
-(2 values)
-
get_train_test_split->X_train
-
-
-X_train
-(2 values)
+
+
+X_train
+(2 values)
get_train_test_split->y_train
-
-
-y_train
-(2 values)
+
+
+y_train
+(2 values)
+
+
+
+get_train_test_split->X_test
+
+
+X_test
+(2 values)
+
+
+
+get_train_test_split->y_test
+
+
+y_test
+(2 values)
+
+
+
+scale_data->X
+
+
+X_scaled
+(1 values)
diff --git a/docs/docs/blog/01_cf_files/01_cf_14_0.svg b/docs/docs/blog/01_cf_files/01_cf_14_0.svg
index 8e0ae2e..a6dc734 100644
--- a/docs/docs/blog/01_cf_files/01_cf_14_0.svg
+++ b/docs/docs/blog/01_cf_files/01_cf_14_0.svg
@@ -4,334 +4,334 @@
-
diff --git a/docs/docs/blog/01_cf_files/01_cf_24_0.svg b/docs/docs/blog/01_cf_files/01_cf_24_0.svg
index bebedb0..c50018f 100644
--- a/docs/docs/blog/01_cf_files/01_cf_24_0.svg
+++ b/docs/docs/blog/01_cf_files/01_cf_24_0.svg
@@ -4,405 +4,405 @@
-
+
G
-
-
+
+
-y_test
-
-y_test
-2 values
+accuracy
+
+accuracy
+14 values (14 sinks)
-
-
-eval_ensemble
-
-eval_ensemble
-@op:eval_ensemble
-2 calls
+
+
+n_estimators
+
+n_estimators
+3 values (3 sources)
-
-
-y_test->eval_ensemble
-
-
-y_test
-(2 values)
+
+
+train_random_forest
+
+train_random_forest
+@op:train_random_forest
+6 calls
+
+
+
+n_estimators->train_random_forest
+
+
+n_estimators
+(3 values)
+
+
+
+model
+
+model
+12 values
-
+
eval_model
-
-eval_model
-@op:eval_model
-12 calls
+
+eval_model
+@op:eval_model
+12 calls
-
-
-y_test->eval_model
-
-
-y_test
-(2 values)
+
+
+model->eval_model
+
+
+model
+(12 values)
+
+
+
+__make_list__
+
+__make_list__
+@op:__make_list__
+2 calls
+
+
+
+model->__make_list__
+
+
+*elts
+(12 values)
-
+
X
-
-X
-2 values
+
+X
+2 values
-
+
+get_train_test_split
+
+get_train_test_split
+@op:get_train_test_split
+2 calls
+
+
+
+X->get_train_test_split
+
+
+X
+(2 values)
+
+
+
scale_data
-
-scale_data
-@op:scale_data
-1 calls
+
+scale_data
+@op:scale_data
+1 calls
X->scale_data
-
-
-X
-(1 values)
+
+
+X
+(1 values)
-
-
-get_train_test_split
-
-get_train_test_split
-@op:get_train_test_split
-2 calls
-
-
-
-X->get_train_test_split
-
-
-X
-(2 values)
+
+
+X_train
+
+X_train
+2 values
-
-
-accuracy
-
-accuracy
-14 values (14 sinks)
+
+
+train_svc
+
+train_svc
+@op:train_svc
+6 calls
-
-
-model
-
-model
-12 values
+
+
+X_train->train_svc
+
+
+X_train
+(2 values)
-
-
-__make_list__
-
-__make_list__
-@op:__make_list__
-2 calls
+
+
+X_train->train_random_forest
+
+
+X_train
+(2 values)
-
-
-model->__make_list__
-
-
-*elts
-(12 values)
+
+
+kernel
+
+kernel
+3 values (3 sources)
-
-
-model->eval_model
-
-
-model
-(12 values)
+
+
+kernel->train_svc
+
+
+kernel
+(3 values)
-
-
-n_estimators
-
-n_estimators
-3 values (3 sources)
+
+
+y_train
+
+y_train
+2 values
-
-
-train_random_forest
-
-train_random_forest
-@op:train_random_forest
-6 calls
+
+
+y_train->train_svc
+
+
+y_train
+(2 values)
-
-
-n_estimators->train_random_forest
-
-
-n_estimators
-(3 values)
+
+
+y_train->train_random_forest
+
+
+y_train
+(2 values)
-
+
X_test
-
-X_test
-2 values
-
-
-
-X_test->eval_ensemble
-
-
-X_test
-(2 values)
+
+X_test
+2 values
-
+
X_test->eval_model
-
-
-X_test
-(2 values)
+
+
+X_test
+(2 values)
-
-
-models
-
-models
-2 values
+
+
+eval_ensemble
+
+eval_ensemble
+@op:eval_ensemble
+2 calls
-
-
-models->eval_ensemble
-
-
-models
-(2 values)
+
+
+X_test->eval_ensemble
+
+
+X_test
+(2 values)
-
+
max_depth
-
-max_depth
-1 values (1 sources)
+
+max_depth
+1 values (1 sources)
max_depth->train_random_forest
-
-
-max_depth
-(1 values)
+
+
+max_depth
+(1 values)
+
+
+
+y_test
+
+y_test
+2 values
+
+
+
+y_test->eval_model
+
+
+y_test
+(2 values)
+
+
+
+y_test->eval_ensemble
+
+
+y_test
+(2 values)
-
+
y
-
-y
-1 values
+
+y
+1 values
y->get_train_test_split
-
-
-y
-(1 values)
+
+
+y
+(1 values)
+
+
+
+models
+
+models
+2 values
+
+
+
+models->eval_ensemble
+
+
+models
+(2 values)
-
+
C
-
-C
-1 values (1 sources)
-
-
-
-train_svc
-
-train_svc
-@op:train_svc
-6 calls
+
+C
+1 values (1 sources)
C->train_svc
-
-
-C
-(1 values)
+
+
+C
+(1 values)
-
-
-kernel
-
-kernel
-3 values (3 sources)
+
+
+eval_model->accuracy
+
+
+accuracy
+(12 values)
-
-
-kernel->train_svc
-
-
-kernel
-(3 values)
+
+
+get_train_test_split->X_train
+
+
+X_train
+(2 values)
-
-
-X_train
-
-X_train
-2 values
+
+
+get_train_test_split->y_train
+
+
+y_train
+(2 values)
-
-
-X_train->train_svc
-
-
-X_train
-(2 values)
+
+
+get_train_test_split->X_test
+
+
+X_test
+(2 values)
-
-
-X_train->train_random_forest
-
-
-X_train
-(2 values)
+
+
+get_train_test_split->y_test
+
+
+y_test
+(2 values)
-
-
-y_train
-
-y_train
-2 values
+
+
+eval_ensemble->accuracy
+
+
+accuracy
+(2 values)
-
-
-y_train->train_svc
-
-
-y_train
-(2 values)
+
+
+__make_list__->models
+
+
+list
+(2 values)
-
-
-y_train->train_random_forest
-
-
-y_train
-(2 values)
+
+
+train_svc->model
+
+
+svc_model
+(6 values)
-
+
get_data
-
-get_data
-@op:get_data
-1 calls
+
+get_data
+@op:get_data
+1 calls
get_data->X
-
-
-X
-(1 values)
+
+
+X
+(1 values)
get_data->y
-
-
-y
-(1 values)
+
+
+y
+(1 values)
scale_data->X
-
-
-X_scaled
-(1 values)
-
-
-
-eval_ensemble->accuracy
-
-
-accuracy
-(2 values)
-
-
-
-__make_list__->models
-
-
-list
-(2 values)
-
-
-
-eval_model->accuracy
-
-
-accuracy
-(12 values)
-
-
-
-train_svc->model
-
-
-svc_model
-(6 values)
+
+
+X_scaled
+(1 values)
train_random_forest->model
-
-
-rf_model
-(6 values)
-
-
-
-get_train_test_split->y_test
-
-
-y_test
-(2 values)
-
-
-
-get_train_test_split->X_test
-
-
-X_test
-(2 values)
-
-
-
-get_train_test_split->X_train
-
-
-X_train
-(2 values)
-
-
-
-get_train_test_split->y_train
-
-
-y_train
-(2 values)
+
+
+rf_model
+(6 values)
diff --git a/docs/docs/blog/01_cf_files/01_cf_2_0.svg b/docs/docs/blog/01_cf_files/01_cf_2_0.svg
index 49972bb..80c3633 100644
--- a/docs/docs/blog/01_cf_files/01_cf_2_0.svg
+++ b/docs/docs/blog/01_cf_files/01_cf_2_0.svg
@@ -9,12 +9,28 @@
G
-
+
-w
-
-w
-3 values (3 sinks)
+y
+
+y
+5 values (2 sinks)
+
+
+
+add
+
+add
+@op:add
+3 calls
+
+
+
+y->add
+
+
+y
+(3 values)
@@ -39,14 +55,6 @@
x
(5 values)
-
-
-add
-
-add
-@op:add
-3 calls
-
x->add
@@ -55,20 +63,12 @@
z
(3 values)
-
+
-y
-
-y
-5 values (2 sinks)
-
-
-
-y->add
-
-
-y
-(3 values)
+w
+
+w
+3 values (3 sinks)
diff --git a/docs_source/blog/01_cf.ipynb b/docs_source/blog/01_cf.ipynb
index 8bd8678..33e73ec 100644
--- a/docs_source/blog/01_cf.ipynb
+++ b/docs_source/blog/01_cf.ipynb
@@ -47,10 +47,10 @@
"execution_count": 1,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:17.785661Z",
- "iopub.status.busy": "2024-07-07T16:17:17.785133Z",
- "iopub.status.idle": "2024-07-07T16:17:19.544210Z",
- "shell.execute_reply": "2024-07-07T16:17:19.543445Z"
+ "iopub.execute_input": "2024-07-07T16:20:30.788124Z",
+ "iopub.status.busy": "2024-07-07T16:20:30.787914Z",
+ "iopub.status.idle": "2024-07-07T16:20:32.797913Z",
+ "shell.execute_reply": "2024-07-07T16:20:32.797316Z"
}
},
"outputs": [
@@ -68,12 +68,28 @@
"\n",
"G\n",
"\n",
- "\n",
+ "\n",
"\n",
- "w\n",
- "\n",
- "w\n",
- "3 values (3 sinks)\n",
+ "y\n",
+ "\n",
+ "y\n",
+ "5 values (2 sinks)\n",
+ "\n",
+ "\n",
+ "\n",
+ "add\n",
+ "\n",
+ "add\n",
+ "@op:add\n",
+ "3 calls\n",
+ "\n",
+ "\n",
+ "\n",
+ "y->add\n",
+ "\n",
+ "\n",
+ "y\n",
+ "(3 values)\n",
"\n",
"\n",
"\n",
@@ -98,14 +114,6 @@
"x\n",
"(5 values)\n",
"\n",
- "\n",
- "\n",
- "add\n",
- "\n",
- "add\n",
- "@op:add\n",
- "3 calls\n",
- "\n",
"\n",
"\n",
"x->add\n",
@@ -114,20 +122,12 @@
"z\n",
"(3 values)\n",
"\n",
- "\n",
+ "\n",
"\n",
- "y\n",
- "\n",
- "y\n",
- "5 values (2 sinks)\n",
- "\n",
- "\n",
- "\n",
- "y->add\n",
- "\n",
- "\n",
- "y\n",
- "(3 values)\n",
+ "w\n",
+ "\n",
+ "w\n",
+ "3 values (3 sinks)\n",
"\n",
"\n",
"\n",
@@ -149,7 +149,7 @@
"\n"
],
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -162,14 +162,21 @@
"| | x | increment | y | add | w |\n",
"|---:|----:|:--------------------------------------------|----:|:--------------------------------------|----:|\n",
"| 0 | 1 | Call(increment, cid='948...', hid='6e2...') | 2 | | nan |\n",
- "| 1 | 0 | Call(increment, cid='d47...', hid='230...') | 1 | Call(add, cid='89c...', hid='247...') | 1 |\n",
- "| 2 | 2 | Call(increment, cid='bfb...', hid='5dd...') | 3 | Call(add, cid='a81...', hid='626...') | 5 |\n",
- "| 3 | 4 | Call(increment, cid='928...', hid='adf...') | 5 | Call(add, cid='a54...', hid='deb...') | 9 |\n",
- "| 4 | 3 | Call(increment, cid='9b4...', hid='df2...') | 4 | | nan |\n"
+ "| 1 | 4 | Call(increment, cid='928...', hid='adf...') | 5 | Call(add, cid='a54...', hid='deb...') | 9 |\n",
+ "| 2 | 3 | Call(increment, cid='9b4...', hid='df2...') | 4 | | nan |\n",
+ "| 3 | 0 | Call(increment, cid='d47...', hid='230...') | 1 | Call(add, cid='89c...', hid='247...') | 1 |\n",
+ "| 4 | 2 | Call(increment, cid='bfb...', hid='5dd...') | 3 | Call(add, cid='a81...', hid='626...') | 5 |\n"
]
}
],
"source": [
+ "# for Google Colab\n",
+ "try:\n",
+ " import google.colab\n",
+ " !pip install git+https://github.com/amakelov/mandala\n",
+ "except:\n",
+ " pass\n",
+ "\n",
"from mandala.imports import *\n",
"\n",
"@op(output_names=['y'])\n",
@@ -252,10 +259,10 @@
"execution_count": 2,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:19.566740Z",
- "iopub.status.busy": "2024-07-07T16:17:19.566415Z",
- "iopub.status.idle": "2024-07-07T16:17:19.833625Z",
- "shell.execute_reply": "2024-07-07T16:17:19.833036Z"
+ "iopub.execute_input": "2024-07-07T16:20:32.816877Z",
+ "iopub.status.busy": "2024-07-07T16:20:32.816576Z",
+ "iopub.status.idle": "2024-07-07T16:20:33.153674Z",
+ "shell.execute_reply": "2024-07-07T16:20:33.153084Z"
}
},
"outputs": [],
@@ -294,10 +301,10 @@
"execution_count": 3,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:19.836880Z",
- "iopub.status.busy": "2024-07-07T16:17:19.836649Z",
- "iopub.status.idle": "2024-07-07T16:17:19.908417Z",
- "shell.execute_reply": "2024-07-07T16:17:19.907804Z"
+ "iopub.execute_input": "2024-07-07T16:20:33.156308Z",
+ "iopub.status.busy": "2024-07-07T16:20:33.156092Z",
+ "iopub.status.idle": "2024-07-07T16:20:33.226744Z",
+ "shell.execute_reply": "2024-07-07T16:20:33.226152Z"
}
},
"outputs": [],
@@ -331,10 +338,10 @@
"execution_count": 4,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:19.911595Z",
- "iopub.status.busy": "2024-07-07T16:17:19.911330Z",
- "iopub.status.idle": "2024-07-07T16:17:20.054697Z",
- "shell.execute_reply": "2024-07-07T16:17:20.054044Z"
+ "iopub.execute_input": "2024-07-07T16:20:33.230051Z",
+ "iopub.status.busy": "2024-07-07T16:20:33.229828Z",
+ "iopub.status.idle": "2024-07-07T16:20:33.386055Z",
+ "shell.execute_reply": "2024-07-07T16:20:33.385389Z"
}
},
"outputs": [
@@ -352,11 +359,11 @@
"\n",
"G\n",
"\n",
- "\n",
+ "\n",
"\n",
- "y_test\n",
+ "X_train\n",
"\n",
- "y_test\n",
+ "X_train\n",
"2 values (2 sinks)\n",
"\n",
"\n",
@@ -366,24 +373,8 @@
"X\n",
"2 values\n",
"\n",
- "\n",
- "\n",
- "scale_data\n",
- "\n",
- "scale_data\n",
- "@op:scale_data\n",
- "1 calls\n",
- "\n",
- "\n",
- "\n",
- "X->scale_data\n",
- "\n",
- "\n",
- "X\n",
- "(1 values)\n",
- "\n",
"\n",
- "\n",
+ "\n",
"get_train_test_split\n",
"\n",
"get_train_test_split\n",
@@ -398,15 +389,45 @@
"X\n",
"(2 values)\n",
"\n",
- "\n",
+ "\n",
+ "\n",
+ "scale_data\n",
+ "\n",
+ "scale_data\n",
+ "@op:scale_data\n",
+ "1 calls\n",
+ "\n",
+ "\n",
+ "\n",
+ "X->scale_data\n",
+ "\n",
+ "\n",
+ "X\n",
+ "(1 values)\n",
+ "\n",
+ "\n",
"\n",
- "X_test\n",
+ "y_train\n",
"\n",
- "X_test\n",
+ "y_train\n",
"2 values (2 sinks)\n",
"\n",
- "\n",
+ "\n",
"\n",
+ "X_test\n",
+ "\n",
+ "X_test\n",
+ "2 values (2 sinks)\n",
+ "\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "\n",
+ "y_test\n",
+ "2 values (2 sinks)\n",
+ "\n",
+ "\n",
+ "\n",
"y\n",
"\n",
"y\n",
@@ -420,30 +441,8 @@
"y\n",
"(1 values)\n",
"\n",
- "\n",
- "\n",
- "X_train\n",
- "\n",
- "X_train\n",
- "2 values (2 sinks)\n",
- "\n",
- "\n",
- "\n",
- "y_train\n",
- "\n",
- "y_train\n",
- "2 values (2 sinks)\n",
- "\n",
- "\n",
- "\n",
- "scale_data->X\n",
- "\n",
- "\n",
- "X_scaled\n",
- "(1 values)\n",
- "\n",
"\n",
- "\n",
+ "\n",
"get_data\n",
"\n",
"get_data\n",
@@ -466,43 +465,51 @@
"y\n",
"(1 values)\n",
"\n",
- "\n",
- "\n",
- "get_train_test_split->y_test\n",
- "\n",
- "\n",
- "y_test\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "get_train_test_split->X_test\n",
- "\n",
- "\n",
- "X_test\n",
- "(2 values)\n",
- "\n",
"\n",
"\n",
"get_train_test_split->X_train\n",
- "\n",
- "\n",
- "X_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "X_train\n",
+ "(2 values)\n",
"\n",
"\n",
"\n",
"get_train_test_split->y_train\n",
- "\n",
- "\n",
- "y_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "y_train\n",
+ "(2 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "get_train_test_split->X_test\n",
+ "\n",
+ "\n",
+ "X_test\n",
+ "(2 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "get_train_test_split->y_test\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "(2 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "scale_data->X\n",
+ "\n",
+ "\n",
+ "X_scaled\n",
+ "(1 values)\n",
"\n",
"\n",
"\n"
],
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -529,10 +536,10 @@
"execution_count": 5,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:20.057585Z",
- "iopub.status.busy": "2024-07-07T16:17:20.057375Z",
- "iopub.status.idle": "2024-07-07T16:17:20.099571Z",
- "shell.execute_reply": "2024-07-07T16:17:20.098939Z"
+ "iopub.execute_input": "2024-07-07T16:20:33.389004Z",
+ "iopub.status.busy": "2024-07-07T16:20:33.388496Z",
+ "iopub.status.idle": "2024-07-07T16:20:33.438249Z",
+ "shell.execute_reply": "2024-07-07T16:20:33.437597Z"
}
},
"outputs": [
@@ -566,10 +573,10 @@
"execution_count": 6,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:20.102405Z",
- "iopub.status.busy": "2024-07-07T16:17:20.102196Z",
- "iopub.status.idle": "2024-07-07T16:17:20.417045Z",
- "shell.execute_reply": "2024-07-07T16:17:20.416372Z"
+ "iopub.execute_input": "2024-07-07T16:20:33.440719Z",
+ "iopub.status.busy": "2024-07-07T16:20:33.440499Z",
+ "iopub.status.idle": "2024-07-07T16:20:33.818655Z",
+ "shell.execute_reply": "2024-07-07T16:20:33.817942Z"
}
},
"outputs": [
@@ -582,340 +589,340 @@
"\n",
"\n",
- "\n",
+ "\n",
"\n",
"G\n",
- "\n",
- "\n",
+ "\n",
+ "\n",
"\n",
- "y_test\n",
- "\n",
- "y_test\n",
- "2 values\n",
+ "accuracy\n",
+ "\n",
+ "accuracy\n",
+ "4 values (4 sinks)\n",
+ "\n",
+ "\n",
+ "\n",
+ "n_estimators\n",
+ "\n",
+ "n_estimators\n",
+ "1 values (1 sources)\n",
+ "\n",
+ "\n",
+ "\n",
+ "train_random_forest\n",
+ "\n",
+ "train_random_forest\n",
+ "@op:train_random_forest\n",
+ "2 calls\n",
+ "\n",
+ "\n",
+ "\n",
+ "n_estimators->train_random_forest\n",
+ "\n",
+ "\n",
+ "n_estimators\n",
+ "(1 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "model\n",
+ "\n",
+ "model\n",
+ "4 values\n",
"\n",
"\n",
- "\n",
+ "\n",
"eval_model\n",
- "\n",
- "eval_model\n",
- "@op:eval_model\n",
- "4 calls\n",
+ "\n",
+ "eval_model\n",
+ "@op:eval_model\n",
+ "4 calls\n",
"\n",
- "\n",
- "\n",
- "y_test->eval_model\n",
- "\n",
- "\n",
- "y_test\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "model->eval_model\n",
+ "\n",
+ "\n",
+ "model\n",
+ "(4 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"X\n",
- "\n",
- "X\n",
- "2 values\n",
+ "\n",
+ "X\n",
+ "2 values\n",
"\n",
- "\n",
+ "\n",
"\n",
+ "get_train_test_split\n",
+ "\n",
+ "get_train_test_split\n",
+ "@op:get_train_test_split\n",
+ "2 calls\n",
+ "\n",
+ "\n",
+ "\n",
+ "X->get_train_test_split\n",
+ "\n",
+ "\n",
+ "X\n",
+ "(2 values)\n",
+ "\n",
+ "\n",
+ "\n",
"scale_data\n",
- "\n",
- "scale_data\n",
- "@op:scale_data\n",
- "1 calls\n",
+ "\n",
+ "scale_data\n",
+ "@op:scale_data\n",
+ "1 calls\n",
"\n",
"\n",
"\n",
"X->scale_data\n",
- "\n",
- "\n",
- "X\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "X\n",
+ "(1 values)\n",
"\n",
- "\n",
- "\n",
- "get_train_test_split\n",
- "\n",
- "get_train_test_split\n",
- "@op:get_train_test_split\n",
- "2 calls\n",
+ "\n",
+ "\n",
+ "X_train\n",
+ "\n",
+ "X_train\n",
+ "2 values\n",
"\n",
- "\n",
- "\n",
- "X->get_train_test_split\n",
- "\n",
- "\n",
- "X\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "train_svc\n",
+ "\n",
+ "train_svc\n",
+ "@op:train_svc\n",
+ "2 calls\n",
"\n",
- "\n",
- "\n",
- "accuracy\n",
- "\n",
- "accuracy\n",
- "4 values (4 sinks)\n",
+ "\n",
+ "\n",
+ "X_train->train_svc\n",
+ "\n",
+ "\n",
+ "X_train\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "model\n",
- "\n",
- "model\n",
- "4 values\n",
+ "\n",
+ "\n",
+ "X_train->train_random_forest\n",
+ "\n",
+ "\n",
+ "X_train\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "model->eval_model\n",
- "\n",
- "\n",
- "model\n",
- "(4 values)\n",
+ "\n",
+ "\n",
+ "kernel\n",
+ "\n",
+ "kernel\n",
+ "1 values (1 sources)\n",
"\n",
- "\n",
- "\n",
- "n_estimators\n",
- "\n",
- "n_estimators\n",
- "1 values (1 sources)\n",
+ "\n",
+ "\n",
+ "kernel->train_svc\n",
+ "\n",
+ "\n",
+ "kernel\n",
+ "(1 values)\n",
"\n",
- "\n",
- "\n",
- "train_random_forest\n",
- "\n",
- "train_random_forest\n",
- "@op:train_random_forest\n",
- "2 calls\n",
+ "\n",
+ "\n",
+ "y_train\n",
+ "\n",
+ "y_train\n",
+ "2 values\n",
"\n",
- "\n",
- "\n",
- "n_estimators->train_random_forest\n",
- "\n",
- "\n",
- "n_estimators\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "y_train->train_svc\n",
+ "\n",
+ "\n",
+ "y_train\n",
+ "(2 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "y_train->train_random_forest\n",
+ "\n",
+ "\n",
+ "y_train\n",
+ "(2 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"X_test\n",
- "\n",
- "X_test\n",
- "2 values\n",
+ "\n",
+ "X_test\n",
+ "2 values\n",
"\n",
"\n",
"\n",
"X_test->eval_model\n",
- "\n",
- "\n",
- "X_test\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "X_test\n",
+ "(2 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"max_depth\n",
- "\n",
- "max_depth\n",
- "1 values (1 sources)\n",
+ "\n",
+ "max_depth\n",
+ "1 values (1 sources)\n",
"\n",
"\n",
"\n",
"max_depth->train_random_forest\n",
- "\n",
- "\n",
- "max_depth\n",
- "(1 values)\n",
- "\n",
- "\n",
- "\n",
- "C\n",
- "\n",
- "C\n",
- "1 values (1 sources)\n",
+ "\n",
+ "\n",
+ "max_depth\n",
+ "(1 values)\n",
"\n",
- "\n",
- "\n",
- "train_svc\n",
- "\n",
- "train_svc\n",
- "@op:train_svc\n",
- "2 calls\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "\n",
+ "y_test\n",
+ "2 values\n",
"\n",
- "\n",
- "\n",
- "C->train_svc\n",
- "\n",
- "\n",
- "C\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "y_test->eval_model\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "(2 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"y\n",
- "\n",
- "y\n",
- "1 values\n",
+ "\n",
+ "y\n",
+ "1 values\n",
"\n",
"\n",
"\n",
"y->get_train_test_split\n",
- "\n",
- "\n",
- "y\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "y\n",
+ "(1 values)\n",
"\n",
- "\n",
- "\n",
- "kernel\n",
- "\n",
- "kernel\n",
- "1 values (1 sources)\n",
- "\n",
- "\n",
- "\n",
- "kernel->train_svc\n",
- "\n",
- "\n",
- "kernel\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "C\n",
+ "\n",
+ "C\n",
+ "1 values (1 sources)\n",
"\n",
- "\n",
- "\n",
- "X_train\n",
- "\n",
- "X_train\n",
- "2 values\n",
+ "\n",
+ "\n",
+ "C->train_svc\n",
+ "\n",
+ "\n",
+ "C\n",
+ "(1 values)\n",
"\n",
- "\n",
- "\n",
- "X_train->train_svc\n",
- "\n",
- "\n",
- "X_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "eval_model->accuracy\n",
+ "\n",
+ "\n",
+ "accuracy\n",
+ "(4 values)\n",
"\n",
- "\n",
- "\n",
- "X_train->train_random_forest\n",
- "\n",
- "\n",
- "X_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "get_train_test_split->X_train\n",
+ "\n",
+ "\n",
+ "X_train\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "y_train\n",
- "\n",
- "y_train\n",
- "2 values\n",
+ "\n",
+ "\n",
+ "get_train_test_split->y_train\n",
+ "\n",
+ "\n",
+ "y_train\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "y_train->train_svc\n",
- "\n",
- "\n",
- "y_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "get_train_test_split->X_test\n",
+ "\n",
+ "\n",
+ "X_test\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "y_train->train_random_forest\n",
- "\n",
- "\n",
- "y_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "get_train_test_split->y_test\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "(2 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"get_data\n",
- "\n",
- "get_data\n",
- "@op:get_data\n",
- "1 calls\n",
+ "\n",
+ "get_data\n",
+ "@op:get_data\n",
+ "1 calls\n",
"\n",
"\n",
"\n",
"get_data->X\n",
- "\n",
- "\n",
- "X\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "X\n",
+ "(1 values)\n",
"\n",
"\n",
"\n",
"get_data->y\n",
- "\n",
- "\n",
- "y\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "y\n",
+ "(1 values)\n",
"\n",
"\n",
"\n",
"scale_data->X\n",
- "\n",
- "\n",
- "X_scaled\n",
- "(1 values)\n",
- "\n",
- "\n",
- "\n",
- "eval_model->accuracy\n",
- "\n",
- "\n",
- "accuracy\n",
- "(4 values)\n",
+ "\n",
+ "\n",
+ "X_scaled\n",
+ "(1 values)\n",
"\n",
"\n",
"\n",
"train_svc->model\n",
- "\n",
- "\n",
- "svc_model\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "svc_model\n",
+ "(2 values)\n",
"\n",
"\n",
"\n",
"train_random_forest->model\n",
- "\n",
- "\n",
- "rf_model\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "get_train_test_split->y_test\n",
- "\n",
- "\n",
- "y_test\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "get_train_test_split->X_test\n",
- "\n",
- "\n",
- "X_test\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "get_train_test_split->X_train\n",
- "\n",
- "\n",
- "X_train\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "get_train_test_split->y_train\n",
- "\n",
- "\n",
- "y_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "rf_model\n",
+ "(2 values)\n",
"\n",
"\n",
"\n"
],
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -976,10 +983,10 @@
"execution_count": 7,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:20.419887Z",
- "iopub.status.busy": "2024-07-07T16:17:20.419702Z",
- "iopub.status.idle": "2024-07-07T16:17:20.468835Z",
- "shell.execute_reply": "2024-07-07T16:17:20.468189Z"
+ "iopub.execute_input": "2024-07-07T16:20:33.822627Z",
+ "iopub.status.busy": "2024-07-07T16:20:33.822311Z",
+ "iopub.status.idle": "2024-07-07T16:20:33.892788Z",
+ "shell.execute_reply": "2024-07-07T16:20:33.892116Z"
}
},
"outputs": [
@@ -989,10 +996,10 @@
"text": [
"| | accuracy | scale_data | train_svc | train_random_forest |\n",
"|---:|-----------:|:---------------------------------------------|:--------------------------------------------|:------------------------------------------------------|\n",
- "| 1 | 0.915 | Call(scale_data, cid='09f...', hid='d6b...') | | Call(train_random_forest, cid='e26...', hid='c42...') |\n",
+ "| 2 | 0.915 | Call(scale_data, cid='09f...', hid='d6b...') | | Call(train_random_forest, cid='e26...', hid='c42...') |\n",
"| 3 | 0.885 | | | Call(train_random_forest, cid='519...', hid='997...') |\n",
- "| 0 | 0.82 | Call(scale_data, cid='09f...', hid='d6b...') | Call(train_svc, cid='6f4...', hid='7d9...') | |\n",
- "| 2 | 0.82 | | Call(train_svc, cid='ddf...', hid='6a0...') | |\n"
+ "| 0 | 0.82 | | Call(train_svc, cid='ddf...', hid='6a0...') | |\n",
+ "| 1 | 0.82 | Call(scale_data, cid='09f...', hid='d6b...') | Call(train_svc, cid='6f4...', hid='7d9...') | |\n"
]
}
],
@@ -1021,10 +1028,10 @@
"execution_count": 8,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:20.471850Z",
- "iopub.status.busy": "2024-07-07T16:17:20.471615Z",
- "iopub.status.idle": "2024-07-07T16:17:20.923871Z",
- "shell.execute_reply": "2024-07-07T16:17:20.923157Z"
+ "iopub.execute_input": "2024-07-07T16:20:33.895841Z",
+ "iopub.status.busy": "2024-07-07T16:20:33.895595Z",
+ "iopub.status.idle": "2024-07-07T16:20:34.471464Z",
+ "shell.execute_reply": "2024-07-07T16:20:34.470811Z"
}
},
"outputs": [],
@@ -1086,10 +1093,10 @@
"execution_count": 9,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:20.927048Z",
- "iopub.status.busy": "2024-07-07T16:17:20.926842Z",
- "iopub.status.idle": "2024-07-07T16:17:21.040778Z",
- "shell.execute_reply": "2024-07-07T16:17:21.040113Z"
+ "iopub.execute_input": "2024-07-07T16:20:34.474124Z",
+ "iopub.status.busy": "2024-07-07T16:20:34.473906Z",
+ "iopub.status.idle": "2024-07-07T16:20:34.615060Z",
+ "shell.execute_reply": "2024-07-07T16:20:34.614348Z"
}
},
"outputs": [
@@ -1107,61 +1114,30 @@
"\n",
"G\n",
"\n",
- "\n",
- "\n",
- "y_test\n",
- "\n",
- "y_test\n",
- "2 values (2 sources)\n",
- "\n",
- "\n",
- "\n",
- "eval_model\n",
- "\n",
- "eval_model\n",
- "@op:eval_model\n",
- "12 calls\n",
- "\n",
- "\n",
- "\n",
- "y_test->eval_model\n",
- "\n",
- "\n",
- "y_test\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "eval_ensemble\n",
- "\n",
- "eval_ensemble\n",
- "@op:eval_ensemble\n",
- "2 calls\n",
- "\n",
- "\n",
- "\n",
- "y_test->eval_ensemble\n",
- "\n",
- "\n",
- "y_test\n",
- "(2 values)\n",
- "\n",
"\n",
- "\n",
+ "\n",
"accuracy\n",
"\n",
"accuracy\n",
"14 values (14 sinks)\n",
"\n",
"\n",
- "\n",
+ "\n",
"model\n",
"\n",
"model\n",
"12 values (12 sources)\n",
"\n",
+ "\n",
+ "\n",
+ "eval_model\n",
+ "\n",
+ "eval_model\n",
+ "@op:eval_model\n",
+ "12 calls\n",
+ "\n",
"\n",
- "\n",
+ "\n",
"model->eval_model\n",
"\n",
"\n",
@@ -1169,27 +1145,58 @@
"(12 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"X_test\n",
"\n",
"X_test\n",
"2 values (2 sources)\n",
"\n",
"\n",
- "\n",
+ "\n",
"X_test->eval_model\n",
"\n",
"\n",
"X_test\n",
"(2 values)\n",
"\n",
+ "\n",
+ "\n",
+ "eval_ensemble\n",
+ "\n",
+ "eval_ensemble\n",
+ "@op:eval_ensemble\n",
+ "2 calls\n",
+ "\n",
"\n",
- "\n",
+ "\n",
"X_test->eval_ensemble\n",
"\n",
"\n",
- "X_test\n",
- "(2 values)\n",
+ "X_test\n",
+ "(2 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "\n",
+ "y_test\n",
+ "2 values (2 sources)\n",
+ "\n",
+ "\n",
+ "\n",
+ "y_test->eval_model\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "(2 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "y_test->eval_ensemble\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "(2 values)\n",
"\n",
"\n",
"\n",
@@ -1199,15 +1206,15 @@
"2 values (2 sources)\n",
"\n",
"\n",
- "\n",
+ "\n",
"models->eval_ensemble\n",
- "\n",
- "\n",
- "models\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "models\n",
+ "(2 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"eval_model->accuracy\n",
"\n",
"\n",
@@ -1215,18 +1222,18 @@
"(12 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"eval_ensemble->accuracy\n",
"\n",
"\n",
- "accuracy\n",
- "(2 values)\n",
+ "accuracy\n",
+ "(2 values)\n",
"\n",
"\n",
"\n"
],
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -1258,10 +1265,10 @@
"execution_count": 10,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:21.043843Z",
- "iopub.status.busy": "2024-07-07T16:17:21.043659Z",
- "iopub.status.idle": "2024-07-07T16:17:21.200029Z",
- "shell.execute_reply": "2024-07-07T16:17:21.199297Z"
+ "iopub.execute_input": "2024-07-07T16:20:34.618553Z",
+ "iopub.status.busy": "2024-07-07T16:20:34.618299Z",
+ "iopub.status.idle": "2024-07-07T16:20:34.805530Z",
+ "shell.execute_reply": "2024-07-07T16:20:34.804929Z"
}
},
"outputs": [
@@ -1274,411 +1281,411 @@
"\n",
"\n",
- "\n",
+ "\n",
"\n",
"G\n",
- "\n",
- "\n",
+ "\n",
+ "\n",
"\n",
- "y_test\n",
- "\n",
- "y_test\n",
- "2 values\n",
+ "accuracy\n",
+ "\n",
+ "accuracy\n",
+ "14 values (14 sinks)\n",
"\n",
- "\n",
- "\n",
- "eval_ensemble\n",
- "\n",
- "eval_ensemble\n",
- "@op:eval_ensemble\n",
- "2 calls\n",
+ "\n",
+ "\n",
+ "n_estimators\n",
+ "\n",
+ "n_estimators\n",
+ "3 values (3 sources)\n",
"\n",
- "\n",
- "\n",
- "y_test->eval_ensemble\n",
- "\n",
- "\n",
- "y_test\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "train_random_forest\n",
+ "\n",
+ "train_random_forest\n",
+ "@op:train_random_forest\n",
+ "6 calls\n",
+ "\n",
+ "\n",
+ "\n",
+ "n_estimators->train_random_forest\n",
+ "\n",
+ "\n",
+ "n_estimators\n",
+ "(3 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "model\n",
+ "\n",
+ "model\n",
+ "12 values\n",
"\n",
"\n",
- "\n",
+ "\n",
"eval_model\n",
- "\n",
- "eval_model\n",
- "@op:eval_model\n",
- "12 calls\n",
+ "\n",
+ "eval_model\n",
+ "@op:eval_model\n",
+ "12 calls\n",
"\n",
- "\n",
- "\n",
- "y_test->eval_model\n",
- "\n",
- "\n",
- "y_test\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "model->eval_model\n",
+ "\n",
+ "\n",
+ "model\n",
+ "(12 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "__make_list__\n",
+ "\n",
+ "__make_list__\n",
+ "@op:__make_list__\n",
+ "2 calls\n",
+ "\n",
+ "\n",
+ "\n",
+ "model->__make_list__\n",
+ "\n",
+ "\n",
+ "*elts\n",
+ "(12 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"X\n",
- "\n",
- "X\n",
- "2 values\n",
+ "\n",
+ "X\n",
+ "2 values\n",
"\n",
- "\n",
+ "\n",
"\n",
+ "get_train_test_split\n",
+ "\n",
+ "get_train_test_split\n",
+ "@op:get_train_test_split\n",
+ "2 calls\n",
+ "\n",
+ "\n",
+ "\n",
+ "X->get_train_test_split\n",
+ "\n",
+ "\n",
+ "X\n",
+ "(2 values)\n",
+ "\n",
+ "\n",
+ "\n",
"scale_data\n",
- "\n",
- "scale_data\n",
- "@op:scale_data\n",
- "1 calls\n",
+ "\n",
+ "scale_data\n",
+ "@op:scale_data\n",
+ "1 calls\n",
"\n",
"\n",
"\n",
"X->scale_data\n",
- "\n",
- "\n",
- "X\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "X\n",
+ "(1 values)\n",
"\n",
- "\n",
- "\n",
- "get_train_test_split\n",
- "\n",
- "get_train_test_split\n",
- "@op:get_train_test_split\n",
- "2 calls\n",
- "\n",
- "\n",
- "\n",
- "X->get_train_test_split\n",
- "\n",
- "\n",
- "X\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "X_train\n",
+ "\n",
+ "X_train\n",
+ "2 values\n",
"\n",
- "\n",
- "\n",
- "accuracy\n",
- "\n",
- "accuracy\n",
- "14 values (14 sinks)\n",
+ "\n",
+ "\n",
+ "train_svc\n",
+ "\n",
+ "train_svc\n",
+ "@op:train_svc\n",
+ "6 calls\n",
"\n",
- "\n",
- "\n",
- "model\n",
- "\n",
- "model\n",
- "12 values\n",
+ "\n",
+ "\n",
+ "X_train->train_svc\n",
+ "\n",
+ "\n",
+ "X_train\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "__make_list__\n",
- "\n",
- "__make_list__\n",
- "@op:__make_list__\n",
- "2 calls\n",
+ "\n",
+ "\n",
+ "X_train->train_random_forest\n",
+ "\n",
+ "\n",
+ "X_train\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "model->__make_list__\n",
- "\n",
- "\n",
- "*elts\n",
- "(12 values)\n",
+ "\n",
+ "\n",
+ "kernel\n",
+ "\n",
+ "kernel\n",
+ "3 values (3 sources)\n",
"\n",
- "\n",
- "\n",
- "model->eval_model\n",
- "\n",
- "\n",
- "model\n",
- "(12 values)\n",
+ "\n",
+ "\n",
+ "kernel->train_svc\n",
+ "\n",
+ "\n",
+ "kernel\n",
+ "(3 values)\n",
"\n",
- "\n",
- "\n",
- "n_estimators\n",
- "\n",
- "n_estimators\n",
- "3 values (3 sources)\n",
+ "\n",
+ "\n",
+ "y_train\n",
+ "\n",
+ "y_train\n",
+ "2 values\n",
"\n",
- "\n",
- "\n",
- "train_random_forest\n",
- "\n",
- "train_random_forest\n",
- "@op:train_random_forest\n",
- "6 calls\n",
+ "\n",
+ "\n",
+ "y_train->train_svc\n",
+ "\n",
+ "\n",
+ "y_train\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "n_estimators->train_random_forest\n",
- "\n",
- "\n",
- "n_estimators\n",
- "(3 values)\n",
+ "\n",
+ "\n",
+ "y_train->train_random_forest\n",
+ "\n",
+ "\n",
+ "y_train\n",
+ "(2 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"X_test\n",
- "\n",
- "X_test\n",
- "2 values\n",
- "\n",
- "\n",
- "\n",
- "X_test->eval_ensemble\n",
- "\n",
- "\n",
- "X_test\n",
- "(2 values)\n",
+ "\n",
+ "X_test\n",
+ "2 values\n",
"\n",
"\n",
- "\n",
+ "\n",
"X_test->eval_model\n",
- "\n",
- "\n",
- "X_test\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "X_test\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "models\n",
- "\n",
- "models\n",
- "2 values\n",
+ "\n",
+ "\n",
+ "eval_ensemble\n",
+ "\n",
+ "eval_ensemble\n",
+ "@op:eval_ensemble\n",
+ "2 calls\n",
"\n",
- "\n",
- "\n",
- "models->eval_ensemble\n",
- "\n",
- "\n",
- "models\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "X_test->eval_ensemble\n",
+ "\n",
+ "\n",
+ "X_test\n",
+ "(2 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"max_depth\n",
- "\n",
- "max_depth\n",
- "1 values (1 sources)\n",
+ "\n",
+ "max_depth\n",
+ "1 values (1 sources)\n",
"\n",
"\n",
"\n",
"max_depth->train_random_forest\n",
- "\n",
- "\n",
- "max_depth\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "max_depth\n",
+ "(1 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "\n",
+ "y_test\n",
+ "2 values\n",
+ "\n",
+ "\n",
+ "\n",
+ "y_test->eval_model\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "(2 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "y_test->eval_ensemble\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "(2 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"y\n",
- "\n",
- "y\n",
- "1 values\n",
+ "\n",
+ "y\n",
+ "1 values\n",
"\n",
"\n",
"\n",
"y->get_train_test_split\n",
- "\n",
- "\n",
- "y\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "y\n",
+ "(1 values)\n",
+ "\n",
+ "\n",
+ "\n",
+ "models\n",
+ "\n",
+ "models\n",
+ "2 values\n",
+ "\n",
+ "\n",
+ "\n",
+ "models->eval_ensemble\n",
+ "\n",
+ "\n",
+ "models\n",
+ "(2 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"C\n",
- "\n",
- "C\n",
- "1 values (1 sources)\n",
- "\n",
- "\n",
- "\n",
- "train_svc\n",
- "\n",
- "train_svc\n",
- "@op:train_svc\n",
- "6 calls\n",
+ "\n",
+ "C\n",
+ "1 values (1 sources)\n",
"\n",
"\n",
"\n",
"C->train_svc\n",
- "\n",
- "\n",
- "C\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "C\n",
+ "(1 values)\n",
"\n",
- "\n",
- "\n",
- "kernel\n",
- "\n",
- "kernel\n",
- "3 values (3 sources)\n",
+ "\n",
+ "\n",
+ "eval_model->accuracy\n",
+ "\n",
+ "\n",
+ "accuracy\n",
+ "(12 values)\n",
"\n",
- "\n",
- "\n",
- "kernel->train_svc\n",
- "\n",
- "\n",
- "kernel\n",
- "(3 values)\n",
+ "\n",
+ "\n",
+ "get_train_test_split->X_train\n",
+ "\n",
+ "\n",
+ "X_train\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "X_train\n",
- "\n",
- "X_train\n",
- "2 values\n",
+ "\n",
+ "\n",
+ "get_train_test_split->y_train\n",
+ "\n",
+ "\n",
+ "y_train\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "X_train->train_svc\n",
- "\n",
- "\n",
- "X_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "get_train_test_split->X_test\n",
+ "\n",
+ "\n",
+ "X_test\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "X_train->train_random_forest\n",
- "\n",
- "\n",
- "X_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "get_train_test_split->y_test\n",
+ "\n",
+ "\n",
+ "y_test\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "y_train\n",
- "\n",
- "y_train\n",
- "2 values\n",
+ "\n",
+ "\n",
+ "eval_ensemble->accuracy\n",
+ "\n",
+ "\n",
+ "accuracy\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "y_train->train_svc\n",
- "\n",
- "\n",
- "y_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "__make_list__->models\n",
+ "\n",
+ "\n",
+ "list\n",
+ "(2 values)\n",
"\n",
- "\n",
- "\n",
- "y_train->train_random_forest\n",
- "\n",
- "\n",
- "y_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "train_svc->model\n",
+ "\n",
+ "\n",
+ "svc_model\n",
+ "(6 values)\n",
"\n",
"\n",
- "\n",
+ "\n",
"get_data\n",
- "\n",
- "get_data\n",
- "@op:get_data\n",
- "1 calls\n",
+ "\n",
+ "get_data\n",
+ "@op:get_data\n",
+ "1 calls\n",
"\n",
"\n",
"\n",
"get_data->X\n",
- "\n",
- "\n",
- "X\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "X\n",
+ "(1 values)\n",
"\n",
"\n",
"\n",
"get_data->y\n",
- "\n",
- "\n",
- "y\n",
- "(1 values)\n",
+ "\n",
+ "\n",
+ "y\n",
+ "(1 values)\n",
"\n",
"\n",
"\n",
"scale_data->X\n",
- "\n",
- "\n",
- "X_scaled\n",
- "(1 values)\n",
- "\n",
- "\n",
- "\n",
- "eval_ensemble->accuracy\n",
- "\n",
- "\n",
- "accuracy\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "__make_list__->models\n",
- "\n",
- "\n",
- "list\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "eval_model->accuracy\n",
- "\n",
- "\n",
- "accuracy\n",
- "(12 values)\n",
- "\n",
- "\n",
- "\n",
- "train_svc->model\n",
- "\n",
- "\n",
- "svc_model\n",
- "(6 values)\n",
+ "\n",
+ "\n",
+ "X_scaled\n",
+ "(1 values)\n",
"\n",
"\n",
"\n",
"train_random_forest->model\n",
- "\n",
- "\n",
- "rf_model\n",
- "(6 values)\n",
- "\n",
- "\n",
- "\n",
- "get_train_test_split->y_test\n",
- "\n",
- "\n",
- "y_test\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "get_train_test_split->X_test\n",
- "\n",
- "\n",
- "X_test\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "get_train_test_split->X_train\n",
- "\n",
- "\n",
- "X_train\n",
- "(2 values)\n",
- "\n",
- "\n",
- "\n",
- "get_train_test_split->y_train\n",
- "\n",
- "\n",
- "y_train\n",
- "(2 values)\n",
+ "\n",
+ "\n",
+ "rf_model\n",
+ "(6 values)\n",
"\n",
"\n",
"\n"
],
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -1717,10 +1724,10 @@
"execution_count": 11,
"metadata": {
"execution": {
- "iopub.execute_input": "2024-07-07T16:17:21.202984Z",
- "iopub.status.busy": "2024-07-07T16:17:21.202807Z",
- "iopub.status.idle": "2024-07-07T16:17:21.326262Z",
- "shell.execute_reply": "2024-07-07T16:17:21.325595Z"
+ "iopub.execute_input": "2024-07-07T16:20:34.807913Z",
+ "iopub.status.busy": "2024-07-07T16:20:34.807675Z",
+ "iopub.status.idle": "2024-07-07T16:20:34.956885Z",
+ "shell.execute_reply": "2024-07-07T16:20:34.955811Z"
}
},
"outputs": [
@@ -1730,20 +1737,20 @@
"text": [
"| | n_estimators | kernel | accuracy |\n",
"|---:|:-----------------------------|:-------------------------------------------|-----------:|\n",
- "| 1 | | rbf | 0.915 |\n",
- "| 5 | 5 | | 0.915 |\n",
- "| 9 | | rbf | 0.91 |\n",
- "| 2 | 20 | | 0.9 |\n",
- "| 4 | 10 | | 0.9 |\n",
- "| 6 | 10 | | 0.9 |\n",
- "| 7 | 20 | | 0.9 |\n",
- "| 0 | ValueCollection([20, 10, 5]) | ValueCollection(['linear', 'rbf', 'poly']) | 0.895 |\n",
- "| 11 | ValueCollection([20, 10, 5]) | ValueCollection(['linear', 'rbf', 'poly']) | 0.895 |\n",
- "| 13 | 5 | | 0.885 |\n",
- "| 10 | | poly | 0.835 |\n",
- "| 3 | | linear | 0.82 |\n",
- "| 8 | | linear | 0.82 |\n",
- "| 12 | | poly | 0.82 |\n"
+ "| 2 | 5 | | 0.915 |\n",
+ "| 11 | | rbf | 0.915 |\n",
+ "| 13 | | rbf | 0.91 |\n",
+ "| 0 | 10 | | 0.9 |\n",
+ "| 3 | 10 | | 0.9 |\n",
+ "| 6 | 20 | | 0.9 |\n",
+ "| 9 | 20 | | 0.9 |\n",
+ "| 8 | ValueCollection([20, 10, 5]) | ValueCollection(['linear', 'rbf', 'poly']) | 0.895 |\n",
+ "| 12 | ValueCollection([20, 10, 5]) | ValueCollection(['linear', 'rbf', 'poly']) | 0.895 |\n",
+ "| 4 | 5 | | 0.885 |\n",
+ "| 1 | | poly | 0.835 |\n",
+ "| 5 | | poly | 0.82 |\n",
+ "| 7 | | linear | 0.82 |\n",
+ "| 10 | | linear | 0.82 |\n"
]
}
],