Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

关于MovingMINST的实验设置 #52

Open
water-wbq opened this issue Jul 5, 2023 · 1 comment
Open

关于MovingMINST的实验设置 #52

water-wbq opened this issue Jul 5, 2023 · 1 comment
Labels
question Further information is requested

Comments

@water-wbq
Copy link

water-wbq commented Jul 5, 2023

您好,非常感谢您出色的工作!
我目前有2个问题:

问题1:
我发现论文中MovingMINST的实验设置和视频预测系列文章中的设置有些不同。
论文中,是总数是10000,其中train是8100,val是900,test是1000,都来自mnist_test_seq.npy。
在许多其他文章中(比如baselines中的PredRNN、PhyDNet),是训练10000,测试10000,训练来自train-images-idx3-ubyte.gz,测试来自mnist_test_seq.npy。
请问论文中这样的不同设置是有什么原因吗?

问题2:
我只有1个gpu,想rerun一下Earthformer,该如何设置呢?如果按照原始的代码,会遇到ApexDDPStrategy报错的问题。

谢谢!

@gaozhihan
Copy link
Contributor

gaozhihan commented Jul 5, 2023

Question 1

We found that the experimental settings of the MovingMNIST benchmark are not standardized. Many methods use an infinite training set (generated on the fly). To establish a unified evaluation standard, we chose to use the publicly available data with the highest utilization/consensus: mnist_test_seq.npy.

Question 2

Taking MovingMNIST as an example, please remove the settings related to multi-GPU communication from the training command:

python train_cuboid_mnist.py --cfg cfg.yaml --ckpt_name last.ckpt --save tmp_mnist

If there are still issues, it could be caused by a version mismatch of pytorch_lightning. Please make sure that the version of pytorch_lightning is 1.6.4 specified in README:

pip uninstall pytorch_lightning
pip install pytorch_lightning==1.6.4

问题1

我们发现MovingMNIST benchmark的实验设置标准并不统一, 很多方法采用了无限训练集(generated on the fly).
为统一衡量标准, 我们选择了使用率/认同度最高的公开数据mnist_test_seq.npy.

问题2

以MovingMNIST为例, 请将训练命令中有关多GPU通讯的设置删除:

python train_cuboid_mnist.py --cfg cfg.yaml --ckpt_name last.ckpt --save tmp_mnist

如果仍然有问题, 可能是由pytorch_lightning的版本不匹配造成的. 请确认pytorch_lightningREADME中指定的1.6.4版本:

pip uninstall pytorch_lightning
pip install pytorch_lightning==1.6.4

@gaozhihan gaozhihan added the question Further information is requested label Jul 5, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Further information is requested
Projects
None yet
Development

No branches or pull requests

2 participants