forked from chenzomi12/AISystem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01.srt
1292 lines (969 loc) · 21.3 KB
/
01.srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,000 --> 00:00:04,050
Subtitle:PlusV98,校对ZOMI
2
00:00:05,312 --> 00:00:06,425
哈喽大家好
3
00:00:06,425 --> 00:00:09,800
我是上班不更新更新不上班的ZOMI
4
00:00:09,800 --> 00:00:11,223
这里面的所有的视频呢
5
00:00:11,223 --> 00:00:13,600
都是我用业余的时间来去搞的
6
00:00:13,600 --> 00:00:17,100
所以我的本质工作呢不是一位讲师
7
00:00:17,100 --> 00:00:19,200
我是一名研发的工程师
8
00:00:19,200 --> 00:00:20,256
今天呢
9
00:00:20,256 --> 00:00:22,931
来给大家去汇报AI芯片里面GPU详解
10
00:00:22,931 --> 00:00:26,061
里面最核心 或者ZOMI最关心的一部分
11
00:00:26,061 --> 00:00:28,250
就是Tensor Core的原理
12
00:00:29,875 --> 00:00:32,475
在这个个PPT里面的一共有50多页
13
00:00:32,475 --> 00:00:34,897
也是ZOMI写过最长的一个PPT了
14
00:00:34,897 --> 00:00:37,070
关于AI系统这个系列里面
15
00:00:37,070 --> 00:00:39,732
现在看到整个英伟达的GPU架构
16
00:00:39,732 --> 00:00:42,100
已经来到了最后的两个内容
17
00:00:42,100 --> 00:00:43,300
第一个就是Tensor Core
18
00:00:43,300 --> 00:00:44,600
第二个就是NVLink
19
00:00:44,600 --> 00:00:47,250
而Tensor Core也是整个英伟达GPU架构里面
20
00:00:47,250 --> 00:00:48,825
最核心的一部分
21
00:00:48,825 --> 00:00:52,550
今天会给大家展开三个内容去汇报
22
00:00:52,984 --> 00:00:54,665
第一个内容就是卷积
23
00:00:54,665 --> 00:00:56,183
跟Tensor Core之间的关系
24
00:00:56,183 --> 00:00:59,959
把AI里面的卷积跟Tensor Core硬件结合起来
25
00:00:59,959 --> 00:01:02,733
接着去看看Tensor Core的基本原理
26
00:01:02,733 --> 00:01:05,101
它是怎么去组成怎么去运作的
27
00:01:05,101 --> 00:01:08,365
最后来看看Tensor Core的架构的演进
28
00:01:08,365 --> 00:01:09,553
从Volta架构的Tensor Core
29
00:01:09,553 --> 00:01:11,250
到Hopper架构的Tensor Core
30
00:01:11,250 --> 00:01:12,425
它到底有什么不一样
31
00:01:12,425 --> 00:01:14,225
你以为到这里面就结束了
32
00:01:14,225 --> 00:01:16,275
不是
33
00:01:16,275 --> 00:01:28,767
未知错误几秒钟...
34
00:01:29,425 --> 00:01:33,132
现在呢一起来回顾一下英伟达GPU的整个架构的发展
35
00:01:33,132 --> 00:01:36,525
从2010年的Fermi到2022年的Hopper
36
00:01:36,525 --> 00:01:37,525
经历了十二年
37
00:01:37,525 --> 00:01:39,500
出现了九代的架构
38
00:01:39,500 --> 00:01:41,400
里面呢 从2017年的福特架构开始
39
00:01:41,400 --> 00:01:43,900
就出现了第一代的Tensor Core
40
00:01:43,900 --> 00:01:46,500
从Volta第一代的Tensor Core开始
41
00:01:46,500 --> 00:01:50,252
NV每一个架构都会对Tensor Core进行更新
42
00:01:50,252 --> 00:01:52,852
今天来看看具体这些更新有什么不一样
43
00:01:53,300 --> 00:01:56,325
现在来到了第一个内容
44
00:01:56,325 --> 00:01:58,025
卷积计算
45
00:01:58,025 --> 00:01:59,200
其实在之前
46
00:01:59,200 --> 00:01:59,325
ZOMI的一系列的视频里面
47
00:01:59,325 --> 00:02:01,488
ZOMI的一系列的视频里面
48
00:02:01,488 --> 00:02:03,075
就讲过Kernel的优化
49
00:02:03,075 --> 00:02:03,088
Kernel的优化就去给大家去讲讲
50
00:02:03,088 --> 00:02:05,120
Kernel的优化就去给大家去讲讲
51
00:02:05,120 --> 00:02:07,663
实际上对于卷积神经网络的计算
52
00:02:07,663 --> 00:02:10,916
并不是通过滑窗的方式进行滑动计算
53
00:02:10,916 --> 00:02:13,375
也就是上面的这个图
54
00:02:13,375 --> 00:02:15,390
而真正的计算是通过
55
00:02:15,390 --> 00:02:18,089
是通过CNN或者Image2Col的方式
56
00:02:18,089 --> 00:02:19,889
进行矩阵相乘计算的
57
00:02:19,889 --> 00:02:21,289
有兴趣的朋友可以看回之前
58
00:02:21,289 --> 00:02:23,100
给大家分享的视频
59
00:02:24,350 --> 00:02:25,113
好了好了
60
00:02:25,113 --> 00:02:27,100
现在来到第二个内容
61
00:02:27,100 --> 00:02:29,700
也是正式进入到本节的内容
62
00:02:29,700 --> 00:02:31,600
Tensor Core的基本原理
63
00:02:31,600 --> 00:02:32,100
首先呢
64
00:02:32,100 --> 00:02:35,900
我要提一个问题就是什么是混合精度
65
00:02:35,900 --> 00:02:38,025
ZOMI老师你好啊
66
00:02:38,025 --> 00:02:40,841
混合精度不是指网络模型里面
67
00:02:40,841 --> 00:02:43,017
又有FP16又有FP32吗
68
00:02:44,067 --> 00:02:45,800
这个答案是错的
69
00:02:46,042 --> 00:02:49,358
实际上这里面指的混合精度呢
70
00:02:49,358 --> 00:02:52,399
是指在底层硬件算子层面呢
71
00:02:52,399 --> 00:02:54,799
使用FP32作为输入输出
72
00:02:54,799 --> 00:02:55,899
就input output
73
00:02:55,899 --> 00:02:56,599
然后呢
74
00:02:56,599 --> 00:02:59,625
使用FP32作为中间结果进行存储
75
00:02:59,625 --> 00:03:03,100
从而使得训练过程精度不降低
76
00:03:03,100 --> 00:03:04,866
而这个底层硬件的实现呢
77
00:03:04,866 --> 00:03:06,364
主要就是Tensor Core
78
00:03:06,364 --> 00:03:08,925
可以看到FP16对比FP32
79
00:03:08,925 --> 00:03:11,250
不管是从整数位还是小数位来看
80
00:03:11,250 --> 00:03:13,331
它所表示的范围呢要小很多
81
00:03:14,300 --> 00:03:18,175
现在来到了Volta架构的第一代Tensor Core
82
00:03:18,175 --> 00:03:19,414
可以看到里面SM里面呢
83
00:03:19,414 --> 00:03:21,714
就有了很多个Tensor Core
84
00:03:21,714 --> 00:03:23,914
左边对应的就是CUDA Core
85
00:03:23,914 --> 00:03:26,795
而CUDA Core以前去计算FMA
86
00:03:26,795 --> 00:03:27,773
也就是Fused MatMul
87
00:03:27,773 --> 00:03:28,800
Accumulation呢 底层硬件
88
00:03:28,800 --> 00:03:31,715
需要来回的去把数据搬运
89
00:03:31,715 --> 00:03:33,000
进行一个乘加的时候呢
90
00:03:33,000 --> 00:03:33,079
就要请寄存器
91
00:03:33,079 --> 00:03:34,503
就要请寄存器
92
00:03:34,503 --> 00:03:37,700
到ALU进行层 到寄存器 到ALU进行加
93
00:03:37,700 --> 00:03:39,000
然后到存回ALU
94
00:03:39,000 --> 00:03:40,495
整体来说
95
00:03:40,495 --> 00:03:41,500
要来回的去搬运数据
96
00:03:41,500 --> 00:03:42,000
但是呢
97
00:03:42,000 --> 00:03:44,100
引入了Tensor Core之后呢
98
00:03:44,100 --> 00:03:46,000
提供了可编程的矩阵乘法
99
00:03:46,000 --> 00:03:48,500
和累加独立的单元
100
00:03:48,500 --> 00:03:51,188
专门为AI训练进行加速
101
00:03:51,188 --> 00:03:53,188
每一个SM呢有8组Tensor Core
102
00:03:53,188 --> 00:03:54,575
每一个Tensor Core呢
103
00:03:54,575 --> 00:03:55,875
在每个时钟周期内呢
104
00:03:55,875 --> 00:03:57,716
能执行4×4×4的GEMM
105
00:03:57,716 --> 00:03:59,700
也就是64个FMA
106
00:03:59,700 --> 00:04:00,880
那整体来说呢
107
00:04:00,880 --> 00:04:04,880
就执行A×B加C等于D
108
00:04:04,880 --> 00:04:06,087
这么一个运算
109
00:04:06,087 --> 00:04:06,400
其中呢
110
00:04:06,400 --> 00:04:08,200
ABC和D呢
111
00:04:08,200 --> 00:04:09,800
都是一个4×4的矩阵
112
00:04:09,800 --> 00:04:11,200
矩阵乘法里面的数呢
113
00:04:11,200 --> 00:04:13,400
A和B可以是Fp16
114
00:04:13,400 --> 00:04:16,542
而累加矩阵C和得到的结果D呢
115
00:04:16,542 --> 00:04:18,600
可以是Fp16或者Fp32
116
00:04:18,600 --> 00:04:20,541
因此称底层硬件Tensor Core呢
117
00:04:20,541 --> 00:04:22,141
它是一个混合精度的计算
118
00:04:24,331 --> 00:04:25,949
再打开细一层
119
00:04:25,949 --> 00:04:27,863
其实呢 每个Tensor Core
120
00:04:27,863 --> 00:04:29,819
可以执行64个FMA的
121
00:04:29,819 --> 00:04:30,819
混合精度计算
122
00:04:30,819 --> 00:04:32,032
那SM里面呢
123
00:04:32,032 --> 00:04:33,106
一共有8个Tensor Core
124
00:04:33,106 --> 00:04:34,941
所以每个时钟周期内呢
125
00:04:34,941 --> 00:04:38,341
一共可以执行512个浮点运算的
126
00:04:38,341 --> 00:04:40,497
具体大家可以自己算一算
127
00:04:40,497 --> 00:04:42,309
因此呢 新一代Volta的GPU呢
128
00:04:42,309 --> 00:04:43,019
吞吐量
129
00:04:43,019 --> 00:04:45,489
对于AI的计算矩阵乘和累加呢
130
00:04:45,489 --> 00:04:47,674
会比PASCAL架构的GPU
131
00:04:47,674 --> 00:04:49,438
每个SM的AI吞吐量呢
132
00:04:49,438 --> 00:04:50,438
增加了8倍
133
00:04:50,438 --> 00:04:51,742
总共增加12倍
134
00:04:51,742 --> 00:04:53,642
因为SM会更多嘛
135
00:04:53,642 --> 00:04:55,074
对于矩阵乘的数呢
136
00:04:55,074 --> 00:04:57,126
是Fp16两个矩阵进行相乘
137
00:04:57,126 --> 00:04:59,300
然后进行Fp32的累加
138
00:04:59,300 --> 00:05:00,526
最后存储的时候呢
139
00:05:00,526 --> 00:05:02,826
是进行Fp32的存储方式
140
00:05:03,800 --> 00:05:05,724
但神经网络里面
141
00:05:05,724 --> 00:05:08,124
不仅仅只有一个矩阵乘这么简单
142
00:05:08,124 --> 00:05:10,202
在训练的过程当中呢
143
00:05:10,202 --> 00:05:12,970
就会遇到卷积跟激活进行相乘
144
00:05:12,970 --> 00:05:14,770
得到另外一个新的feature map
145
00:05:14,770 --> 00:05:16,270
另外的话 很重要的一点
146
00:05:16,270 --> 00:05:18,170
看看箭头是逆向过来的
147
00:05:18,897 --> 00:05:20,853
上面两种就是反向传播的时候
148
00:05:20,853 --> 00:05:22,853
权重还有激活层呢
149
00:05:22,853 --> 00:05:24,453
需要进行反向的计算
150
00:05:24,453 --> 00:05:26,997
与卷积的正向呢是刚好相反的
151
00:05:26,997 --> 00:05:29,297
另外呢 还有一种专门针对激活函数
152
00:05:29,297 --> 00:05:30,797
还有激活的梯度呢
153
00:05:30,797 --> 00:05:32,173
进行反向的计算
154
00:05:32,173 --> 00:05:34,187
那整体在计算的过程当中呢
155
00:05:34,187 --> 00:05:36,487
这里面有大量的绿色都是Fp16的
156
00:05:36,487 --> 00:05:37,787
真正存储的时候呢
157
00:05:37,787 --> 00:05:39,416
是使用Fp32进行存储的
158
00:05:39,416 --> 00:05:42,416
这种就是非常明确的混合精度训练
159
00:05:45,200 --> 00:05:47,000
现在来到了第三个内容
160
00:05:47,000 --> 00:05:48,500
也就是我插播的一个内容
161
00:05:48,500 --> 00:05:50,700
Tensor Core跟CUDA Programming
162
00:05:50,700 --> 00:05:52,100
之间的一个关系
163
00:05:53,069 --> 00:05:56,750
在CUDA里面 其实并不是控制每一条弯弯的线呢
164
00:05:56,750 --> 00:05:57,950
进行线程控制的
165
00:05:57,950 --> 00:05:59,350
而是通过控制一个Warp
166
00:05:59,350 --> 00:06:02,016
一个Warp呢就包含很多个线程
167
00:06:02,016 --> 00:06:04,430
同一时间并行并发的去执行
168
00:06:04,430 --> 00:06:06,030
那在真正执行的时候呢
169
00:06:06,030 --> 00:06:08,078
会做一个Warp同步的操作
170
00:06:08,078 --> 00:06:09,778
把所有的线程呢都进行同步
171
00:06:09,778 --> 00:06:11,178
然后获取同样的数据
172
00:06:11,589 --> 00:06:12,301
接着呢
173
00:06:12,301 --> 00:06:15,189
进行一个16x16的矩阵相乘和矩阵计算
174
00:06:15,189 --> 00:06:15,659
最后呢
175
00:06:15,659 --> 00:06:15,689
再把结果呢存储在不同的Warp上面
176
00:06:15,689 --> 00:06:18,029
再把结果呢存储在不同的Warp上面
177
00:06:18,364 --> 00:06:18,914
Warp呢
178
00:06:18,914 --> 00:06:22,014
就是在软件上面做一个大的线程的概念
179
00:06:22,997 --> 00:06:25,044
在CUDA程序执行的过程当中呢
180
00:06:25,044 --> 00:06:27,244
可以通过线程的Warp来去调度
181
00:06:27,244 --> 00:06:28,144
Tensor Core
182
00:06:28,144 --> 00:06:29,544
在一个Warp线程里面呢
183
00:06:29,544 --> 00:06:32,978
通过Tensor Core来提供一个16x16x16的
184
00:06:32,978 --> 00:06:34,178
矩阵运算
185
00:06:34,178 --> 00:06:34,678
哎
186
00:06:34,678 --> 00:06:36,762
刚才的Tensor Core不是4x4x4吗
187
00:06:36,762 --> 00:06:39,462
现在怎么变成16x16x16了
188
00:06:39,648 --> 00:06:40,305
不着急
189
00:06:40,305 --> 00:06:41,605
后面会展开的
190
00:06:42,200 --> 00:06:45,333
在真正CUDA通过Tensor Core进行编程呢
191
00:06:45,333 --> 00:06:47,696
通过Warp来提供CUDA C++
192
00:06:47,696 --> 00:06:50,859
WMMA的API对外提供给开发者
193
00:06:50,859 --> 00:06:52,159
这里面的WMMA呢
194
00:06:52,159 --> 00:06:54,559
主要是专门针对Tensor Core
195
00:06:54,559 --> 00:06:56,259
进行矩阵的加载了
196
00:06:56,259 --> 00:06:56,859
存储了
197
00:06:56,859 --> 00:06:58,155
还有具体的计算
198
00:06:58,155 --> 00:06:59,255
那MMA sync呢
199
00:06:59,255 --> 00:07:00,555
这个就是具体的计算
200
00:07:00,555 --> 00:07:01,455
后面有个sync呢
201
00:07:01,455 --> 00:07:02,994
就是刚才提到的
202
00:07:02,994 --> 00:07:03,794
所有的Warp呢
203
00:07:03,794 --> 00:07:05,294
之间需要进行同步的
204
00:07:05,986 --> 00:07:07,653
其实呢整体看一下
205
00:07:07,653 --> 00:07:09,753
其实刚才提到的Tensor Core是一个
206
00:07:09,753 --> 00:07:11,356
4x4的Tensor Core的核
207
00:07:11,356 --> 00:07:12,305
但实际上呢
208
00:07:12,305 --> 00:07:14,335
一个SM里面有多个Tensor Core
209
00:07:14,335 --> 00:07:16,213
不可能最细粒度的去控制
210
00:07:16,213 --> 00:07:16,900
每一个Tensor Core
211
00:07:16,900 --> 00:07:17,615
这样的效率会很低
212
00:07:17,615 --> 00:07:18,130
于是呢
213
00:07:18,130 --> 00:07:18,630
一个Warp呢
214
00:07:18,630 --> 00:07:21,072
就帮把好几个Tensor Core包装起来
215
00:07:21,182 --> 00:07:25,682
对外提供一个16x16x16的一个Warp level的卷积的指令
216
00:07:26,145 --> 00:07:26,960
那这个指令呢
217
00:07:26,960 --> 00:07:28,335
最后通过MMA sync呢
218
00:07:28,335 --> 00:07:30,300
这个API进行计算
219
00:07:30,797 --> 00:07:32,797
看看具体的CUDA代码
220
00:07:36,455 --> 00:07:38,812
在头上includeMMA以后
221
00:07:38,812 --> 00:07:39,457
namespace nvCUDA
222
00:07:39,457 --> 00:07:40,734
在nvCUDA里面呢
223
00:07:40,734 --> 00:07:41,877
首先要声明有些Fragment
224
00:07:41,877 --> 00:07:43,319
Fragment就是片段
225
00:07:43,319 --> 00:07:44,800
或者存储的数据
226
00:07:45,113 --> 00:07:45,713
这里面呢
227
00:07:45,713 --> 00:07:48,171
就是对外呈现的16x16的一个Warp level
228
00:07:48,171 --> 00:07:50,336
初始化一个输出矩阵
229
00:07:50,336 --> 00:07:50,936
然后呢
230
00:07:50,936 --> 00:07:53,236
从内存里面加载A和B两个矩阵
231
00:07:53,236 --> 00:07:53,936
然后
232
00:07:53,936 --> 00:07:56,036
真正执行WMMA的计算
233
00:07:56,036 --> 00:07:56,836
计算完之后呢
234
00:07:56,836 --> 00:07:58,471
就把结果存储回来
235
00:07:58,471 --> 00:08:00,071
存储到C里面
236
00:08:00,071 --> 00:08:02,097
整个CUDA的底层计算呢
237
00:08:02,097 --> 00:08:03,788
就是这么简单
238
00:08:05,512 --> 00:08:06,868
ZOMI老师你好啊
239
00:08:06,868 --> 00:08:07,716
我现在有个问题啊
240
00:08:07,716 --> 00:08:11,031
就你讲了Tensor Core跟CUDA之间的映射
241
00:08:11,031 --> 00:08:13,077
我大概简单懂了一个16x16的
242
00:08:13,077 --> 00:08:15,477
跟4x4之间是怎么映射
243
00:08:15,477 --> 00:08:16,177
但是呢
244
00:08:16,623 --> 00:08:19,705
像Tensor Core一次提供4x4这么小的一个Kernel
245
00:08:19,705 --> 00:08:22,411
或者16x16这么小的一个Kernel
246
00:08:22,411 --> 00:08:25,111
怎么去处理像……这种input image
247
00:08:25,111 --> 00:08:27,211
就是输入的图像要24x24
248
00:08:27,211 --> 00:08:29,611
Kernel等于7x7的GEMM呢
249
00:08:29,611 --> 00:08:32,711
或者在现在的大模型transformer结构里面呢
250
00:08:32,711 --> 00:08:35,711
一个input embedded就2x2048