-
Notifications
You must be signed in to change notification settings - Fork 3
/
video2anime.py
143 lines (125 loc) · 5.72 KB
/
video2anime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
'''
made by @finnkso (github)
2020.04.09
tensorflow-gpu==1.15.0 : tf.compat.v1
if tensorflow-gpu==1.8.0, please replayce tf.compat.v1 to tf
'''
import argparse
import os
import tkinter as tk
from tkinter import filedialog
import cv2
from tqdm import tqdm
import numpy as np
import tensorflow as tf
from net import generator,generator_lite
from tools.utils import preprocessing, check_folder
from tools.adjust_brightness import adjust_brightness_from_src_to_dst
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
def parse_args():
desc = "Tensorflow implementation of ARGANv1"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--video', type=str, default='video/input/'+ '2.mp4',
help='video file or number for webcam')
parser.add_argument('--checkpoint_dir', type=str, default='../checkpoint/generator_Paprika_weight',
help='Directory name to save the checkpoints')
parser.add_argument('--output', type=str, default='video/output/' + 'Paprika',
help='output path')
parser.add_argument('--output_format', type=str, default='MP4V',
help='codec used in VideoWriter when saving video to file')
"""
output_format: xxx.mp4('MP4V'), xxx.mkv('FMP4'), xxx.flv('FLV1'), xxx.avi('XIVD')
ps. ffmpeg -i xxx.mkv -c:v libx264 -strict -2 xxxx.mp4, this command can convert mkv to mp4, which has small size.
"""
return parser.parse_args()
def getfileloc(initialdir='/', method='open', title='Please select a file', filetypes=(("video files", ".mkv .avi .mp4"), ("all files","*.*"))):
root = tk.Tk()
if method == 'open':
fileloc = filedialog.askopenfilename(parent=root, initialdir=initialdir, title=title, filetypes=filetypes)
elif method == 'save':
fileloc = filedialog.asksaveasfilename(parent=root, initialdir=initialdir, initialfile='out.avi', title=title, filetypes=filetypes)
root.withdraw()
return fileloc
def convert_image(img, img_size):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = preprocessing(img, img_size)
img = np.expand_dims(img, axis=0)
img = np.asarray(img)
return img
def inverse_image(img):
img = (img.squeeze()+1.) / 2 * 255
img = img.astype(np.uint8)
return img
def cvt2anime_video(video, output, checkpoint_dir, output_format='MP4V', img_size=(256,256)):
'''
output_format: 4-letter code that specify codec to use for specific video type. e.g. for mp4 support use "H264", "MP4V", or "X264"
'''
# gpu_stat = bool(len(tf.config.experimental.list_physical_devices('GPU')))
# if gpu_stat:
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
gpu_options = tf.GPUOptions(allow_growth=True)
test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test')
with tf.variable_scope("generator", reuse=False):
if 'lite' in checkpoint_dir:
test_generated = generator_lite.G_net(test_real).fake
else:
test_generated = generator.G_net(test_real).fake
# load video
vid = cv2.VideoCapture(video)
vid_name = os.path.basename(video)
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(vid.get(cv2.CAP_PROP_FPS))
# codec = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
codec = cv2.VideoWriter_fourcc(*output_format)
tfconfig = tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)
with tf.Session(config=tfconfig) as sess:
# tf.global_variables_initializer().run()
# load model
ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information
saver = tf.train.Saver()
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name)))
else:
print(" [*] Failed to find a checkpoint")
return
# determine output width and height
ret, img = vid.read()
if img is None:
print('Error! Failed to determine frame size: frame empty.')
return
img = preprocessing(img, img_size)
height, width = img.shape[:2]
# out = cv2.VideoWriter(os.path.join(output, vid_name.replace('mp4','mkv')), codec, fps, (width, height))
out = cv2.VideoWriter(os.path.join(output, vid_name), codec, fps, (width, height))
pbar = tqdm(total=total)
vid.set(cv2.CAP_PROP_POS_FRAMES, 0)
while ret:
ret, frame = vid.read()
if frame is None:
print('Warning: got empty frame.')
continue
img = convert_image(frame, img_size)
fake_img = sess.run(test_generated, feed_dict={test_real: img})
fake_img = inverse_image(fake_img)
fake_img = adjust_brightness_from_src_to_dst(fake_img, cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
out.write(cv2.cvtColor(fake_img, cv2.COLOR_BGR2RGB))
pbar.update(1)
pbar.close()
vid.release()
# cv2.destroyAllWindows()
return os.path.join(output, vid_name)
if __name__ == '__main__':
arg = parse_args()
if not arg.video:
arg.video = getfileloc(initialdir='input/')
else:
arg.video = os.path.join(os.path.dirname(os.path.dirname(__file__)), arg.video)
if not arg.output:
arg.output = getfileloc(initialdir='output/', method='save')
else:
arg.output = os.path.join(os.path.dirname(os.path.dirname(__file__)), arg.output)
check_folder(arg.output)
info = cvt2anime_video(arg.video, arg.output, arg.checkpoint_dir, output_format=arg.output_format)
print(f'output video: {info}')