-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
502 lines (385 loc) · 16.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
"""Solution to safe problem."""
import argparse
import operator
from binary_search_tree import *
from constants import *
from utils import *
parser = argparse.ArgumentParser(description='Safe problem')
parser.add_argument('--input', default='input.txt',
help='path to input text file')
args = parser.parse_args()
class LaserBeam:
"""Laser beam.
Attributes:
last_point_visited (tuple): last point visited by beam during trace.
direction (str): direction of laser beam.
horizontal_segments (list): list of horizontal segments from trace.
vertical_segments (list): list of vertical segments from trace.
"""
def __init__(self):
"""Constructor."""
self.last_point_visited = None
self.direction = None
self.horizontal_segments = []
self.vertical_segments = []
def update_direction(self, direction):
"""Update direction of beam.
Args:
direction (str): direction of laser beam.
"""
self.direction = direction
def update_last_point_visited(self, point):
"""Update last point visited attribute.
Args:
point (tuple): position in grid.
"""
self.last_point_visited = point
def add_horizontal_segment(self, segment):
"""Add segment to list of horizontal segments.
Args:
segment (list): horizontal segment represented as list i.e [start, stop].
"""
segment.sort(key=operator.itemgetter(1))
self.horizontal_segments.append(segment)
def add_vertical_segment(self, segment):
"""Add segment to list of vertical segments.
Args:
segment (list): vertical segment represented as list i.e [start, stop].
"""
row_range = tuple(sorted([segment[0][0], segment[1][0]]))
col = segment[0][1]
self.vertical_segments.append(((row_range), col))
class Safe:
r"""Safe with mirrors, specified by config.
Attributes:
rows (int): number of rows in the safe grid.
cols (int): number of columns in the safe grid.
m (int): number of mirrors in / config.
n (int): number of mirrors in \ config.
row_mirror_positions (dict): for a given row, column locations with mirrors.
col_mirror_positions (dict): for a given column, row locations with mirrors.
bst (BinarySearchTree): binary search tree.
"""
def __init__(self, rows, cols, m, n):
"""Constructor."""
self.rows = rows
self.cols = cols
self.m = m
self.n = n
self.row_mirror_positions = {}
self.col_mirror_positions = {}
self.bst = BinarySearchTree()
def create_events_queue(self, horizontal_segments, vertical_segments):
"""Create a queue of events to process.
Args:
horizontal_segments (list): list of horizontal segments.
vertical_segments (list): list of vertical segments.
Returns:
events (list): list of events to process.
"""
events = []
for segment in horizontal_segments:
start, stop = segment
# Markers for start and stop events.
start.append(0)
stop.append(1)
events.append(start)
events.append(stop)
for segment in vertical_segments:
events.append(segment)
events.sort(key=operator.itemgetter(1)) # O(N * log(N)).
return events
def solve(self):
"""Solve safe.
Returns:
(str): solution after solving safe.
"""
done, forward_trace = self.trace_forward()
if done:
return 0 # We are done, no mirror to be inserted.
else:
backward_trace = self.trace_backward()
intersection_points, lexi_candidates = [], []
# Sweep horizontal lines from forward trace.
events = self.create_events_queue(forward_trace.horizontal_segments,
backward_trace.vertical_segments)
intersections = self.compute_intersections(events)
if len(intersections) > 0:
lexi_candidates.append(intersections[0])
intersection_points.extend(intersections)
# Sweep horizontal lines from backward trace.
events = self.create_events_queue(backward_trace.horizontal_segments,
forward_trace.vertical_segments)
intersections = self.compute_intersections(events)
if len(intersections) > 0:
lexi_candidates.append(intersections[0])
intersection_points.extend(intersections)
n_intersections = len(intersection_points)
if n_intersections > 0:
if len(lexi_candidates) > 1:
lexi_first = self.get_lexi_first(lexi_candidates)
else:
lexi_first = lexi_candidates[0]
else:
return "impossible"
result = str(n_intersections) + " " + str(lexi_first[0]) + \
" " + str(lexi_first[1])
return result
def get_lexi_first(self, lexi_candidates):
"""Get lexicographically first point out of two.
Args:
lexi_candidates (list): list of two points that could be
lexicographically first from the two line sweeps.
Returns:
(list): lexicographically first point.
"""
point_a, point_b = lexi_candidates
if (point_a[0] < point_b[0]):
return point_a
elif (point_a[0] == point_b[0]):
if (point_a[1] < point_b[1]):
return point_a
else:
return point_b
def compute_intersections(self, events):
"""Compute intersection points.
Args:
events (list): list of events to process.
Returns:
intersections (list): list of intersection points.
"""
intersections = []
for event in events:
if type(event) is not tuple:
x, y, event_flag = event
if event_flag == 0:
self.bst[x] = x
elif event_flag == 1:
try:
del self.bst[x]
except:
print("Degeneracy case. Just overlapping segments, don't worry!")
else:
x_range, y = event
for i in range(x_range[0] + 1, x_range[1]):
if self.bst[i] is not None:
intersections.append((self.bst[i], y))
return intersections
def run_trace(self, laser_beam_trace, end):
"""Run trace of laser beam and return points that form line segments.
Args:
laser_beam_trace (LaserBeam): laser beam object.
end (list): end point.
Returns:
(tuple): tuple with flag if beam reached end point, laser beam object.
"""
done = False
while True:
next_point_trace, mirror_orientation, laser_beam_trace = \
self.get_next_point_trace(laser_beam_trace)
laser_beam_trace.update_last_point_visited(next_point_trace)
if (next_point_trace == end):
done = True
break
elif (next_point_trace[0] > self.rows) or (next_point_trace[1] > self.cols) \
or (next_point_trace[0] < 1) or (next_point_trace[1] < 1):
break
else:
new_direction = compute_direction(laser_beam_trace.direction, mirror_orientation)
laser_beam_trace.update_direction(new_direction)
return done, laser_beam_trace
def trace_forward(self):
"""Trace path of the laser from the source.
Returns:
(bool, list): flag if beam reached detector, list of points in path.
"""
start = [1, 0]
end = [self.rows, self.cols + 1]
direction = RIGHT
forward_trace = LaserBeam()
forward_trace.update_last_point_visited(start)
forward_trace.update_direction(direction)
done, forward_trace = self.run_trace(forward_trace, end)
return done, forward_trace
def trace_backward(self):
"""Trace path of the laser from the detector back.
Returns:
(list): list of points in path.
"""
start = [self.rows, self.cols + 1]
end = [1, 0]
direction = LEFT
backward_trace = LaserBeam()
backward_trace.update_last_point_visited(start)
backward_trace.update_direction(direction)
_, backward_trace = self.run_trace(backward_trace, end)
return backward_trace
def insert_range(self, list_mirrors, end):
"""Insert the bounds of the safe grid into list.
Args:
list_mirrors (list): list of tuples indicating positions, orientation of mirrors.
end (int): rows or cols depending on list.
Returns:
(list): list of tuples of mirror locations, or bounds of grid.
"""
list_mirrors = [item for item in list_mirrors]
list_mirrors.insert(0, (0, None))
list_mirrors.append((end, None))
return list_mirrors
def get_next_point_trace(self, laser_beam_trace):
"""Get next point in the path of laser beam.
Tracing the path of beam, we find the next mirror it will hit or the
end of the grid.
Args:
laser_beam_trace (LaserBeam): laser beam object.
Returns:
(tuple): next point in the laser beam path, orientation of last mirror
encountered, laser beam object.
"""
current_point_trace = laser_beam_trace.last_point_visited
mirror_orientation = None
cols_with_mirrors = self.row_mirror_positions.get(current_point_trace[0], [])
cols_with_mirrors.sort(key=operator.itemgetter(0))
cols_with_mirrors = self.insert_range(cols_with_mirrors, self.cols + 1)
rows_with_mirrors = self.col_mirror_positions.get(current_point_trace[1], [])
rows_with_mirrors.sort(key=operator.itemgetter(0))
rows_with_mirrors = self.insert_range(rows_with_mirrors, self.rows + 1)
if (laser_beam_trace.direction == RIGHT) or (laser_beam_trace.direction == LEFT):
# Search along a row, beam travelling horizontally.
if cols_with_mirrors is not None:
cols_with_mirrors_pos = [tup[0] for tup in cols_with_mirrors]
closest_mirror_interval = run_binary_search(cols_with_mirrors_pos,
current_point_trace[1])
if laser_beam_trace.direction == RIGHT:
next_point_trace = [current_point_trace[0],
cols_with_mirrors_pos[closest_mirror_interval + 1]]
mirror_orientation = cols_with_mirrors[closest_mirror_interval + 1][1]
elif laser_beam_trace.direction == LEFT:
next_point_trace = [current_point_trace[0],
cols_with_mirrors_pos[closest_mirror_interval - 1]]
mirror_orientation = cols_with_mirrors[closest_mirror_interval - 1][1]
else:
# Laser leaves grid.
next_point_trace = [current_point_trace[0], self.cols]
# Append to list of segments.
laser_beam_trace.add_horizontal_segment([current_point_trace, next_point_trace])
else:
# Search along a col, beam travelling vertically.
if rows_with_mirrors is not None:
rows_with_mirrors_pos = [tup[0] for tup in rows_with_mirrors]
closest_mirror_interval = run_binary_search(rows_with_mirrors_pos,
current_point_trace[0])
if laser_beam_trace.direction == DOWN:
next_point_trace = [rows_with_mirrors_pos[closest_mirror_interval + 1],
current_point_trace[1]]
mirror_orientation = rows_with_mirrors[closest_mirror_interval + 1][1]
elif laser_beam_trace.direction == UP:
next_point_trace = [rows_with_mirrors_pos[closest_mirror_interval - 1],
current_point_trace[1]]
mirror_orientation = rows_with_mirrors[closest_mirror_interval - 1][1]
else:
# Laser leaves grid.
next_point_trace = [self.rows, current_point_trace[1]]
# Append to list of segments.
laser_beam_trace.add_vertical_segment([current_point_trace, next_point_trace])
return next_point_trace, mirror_orientation, laser_beam_trace
def run_binary_search(list_nums, target):
"""Do binary search over a list to find an element location.
Args:
list_nums (list): list of sorted numbers.
target (int): number to find in the list.
Returns:
(int): index of found number.
"""
lower = 0
upper = len(list_nums)
while lower < upper:
mid = lower + (upper - lower) // 2
val = list_nums[mid]
if target == val:
return mid
elif target > val:
if lower == mid:
break
lower = mid
elif target < val:
upper = mid
def compute_direction(direction_laser, mirror_orientation):
r"""Compute new direction of laser beam.
Given current direction of laser beam and mirror orientation, compute new
direction.
Args:
direction_laser (str): current direction of laser beam.
mirror_orientation (int): 0 to signify /, 1 to signify \.
"""
if direction_laser == RIGHT:
if mirror_orientation == 0:
direction = UP
elif mirror_orientation == 1:
direction = DOWN
elif direction_laser == LEFT:
if mirror_orientation == 0:
direction = DOWN
elif mirror_orientation == 1:
direction = UP
elif direction_laser == DOWN:
if mirror_orientation == 0:
direction = LEFT
elif mirror_orientation == 1:
direction = RIGHT
elif direction_laser == UP:
if mirror_orientation == 0:
direction = RIGHT
elif mirror_orientation == 1:
direction = LEFT
return direction
def fill_mirror_position(safe, position, orientation):
r"""Fill mirror position in the rows and columns of the safe.
Args:
safe (Safe): safe object.
position (list): position of mirror i.e. [row, col].
orientation (int): 0 to signify /, 1 to signify \
"""
row, col = position
if safe.row_mirror_positions.get(row) is None:
safe.row_mirror_positions[row] = []
safe.row_mirror_positions[row].append((col, orientation))
if safe.col_mirror_positions.get(col) is None:
safe.col_mirror_positions[col] = []
safe.col_mirror_positions[col].append((row, orientation))
return safe
def prepare_safes_to_solve(config):
"""Initialise safes based on input file.
Args:
config: (list): list of lines read from input file.
Returns:
safes_to_solve (list): list of Safe.
"""
safes_to_solve = []
for line in config:
line_contents = [int(item) for item in line.split(' ')]
if len(line_contents) == 4:
rows, cols, m, n = line_contents
safe = Safe(rows, cols, m, n)
safes_to_solve.append(safe)
count = 0
else:
if count < m:
safe = fill_mirror_position(safe, line_contents, 0)
else:
safe = fill_mirror_position(safe, line_contents, 1)
count += 1
return safes_to_solve
def main():
"""Run main function."""
input_config = read_input(args.input)
safes_to_solve = prepare_safes_to_solve(input_config)
results_to_write = []
for idx, safe in enumerate(safes_to_solve):
result = safe.solve()
result_string = "Case {}: {}".format(idx, result)
print(result_string)
results_to_write.append(result_string)
write_to_file(results_to_write)
if __name__=='__main__':
main()