-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtracking_error.py
46 lines (32 loc) · 1.44 KB
/
tracking_error.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import math
import pandas
import os
import numpy as np
def calculate_tracking_error(truthFile, resultFile, videoId):
truthDf = pandas.read_csv(truthFile)
resultDf = pandas.read_csv(resultFile)
numFrames = min(len(truthDf), len(resultDf));
xErrors = [];
yErrors = [];
for i in range(numFrames):
# print(truthFile, " ", i, " ", truthDf.x[i] - resultDf.x[i], " ", truthDf.y[i] - resultDf.y[i]);
xError = truthDf.x[i] - resultDf.x[i];
yError = truthDf.y[i] - resultDf.y[i];
if not math.isnan(xError) or not math.isnan(yError):
# print(i, " ", xError, " ", yError);
pass;
if (not math.isnan(xError)) and (not math.isnan(yError)):
xErrors.append(abs(xError));
yErrors.append(abs(yError));
print(videoId, ": Average x error = %.2f, Average y error = %.2f \n" % (np.mean(xErrors), np.mean(yErrors)));
numProcessedFiles = 0;
for camNum in [1, 2, 3]:
resultDir = os.path.join('.', 'Videos', 'CAM' + str(camNum));
for file in os.listdir(resultDir):
if file.endswith(".csv"):
pathToResultFile = os.path.join(resultDir, file);
videoId = file.split(".")[0];
pathToTruthFile = os.path.join('.', 'Actual', 'CAM' + str(camNum), videoId + ".csv");
calculate_tracking_error(pathToTruthFile, pathToResultFile, videoId);
numProcessedFiles += 1;
print("Processed ", numProcessedFiles, "files");