-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_analysis.R
61 lines (36 loc) · 2.51 KB
/
run_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# set the working directory
setwd("C:\\Users\\Ana\\Documents\\Online_Courses\\_Specialization_Data_Science\\3_Getting_and_Cleaning_Data_June_2014\\project")
# read the training and the test datasets
trainData = read.table(".\\getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\train\\X_train.txt")
testData = read.table(".\\getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\test\\X_test.txt")
# merge the two datasets
mergedData <- rbind(trainData, testData)
# assign variable names for the measurements
features <- read.table(".\\getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\features.txt")
colnames(mergedData) <- features[,2]
# add the activity and the subject who performed the activity
train_activity = read.table(".\\getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\train\\y_train.txt")
test_activity = read.table(".\\getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\test\\y_test.txt")
activities <- rbind(train_activity, test_activity)
mergedData$activity <- activities
subject_train <- read.table(".\\getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\train\\subject_train.txt")
subject_test <- read.table(".\\getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\test\\subject_test.txt")
subjects <- rbind(subject_train, subject_test)
mergedData$subject <- subjects
# extract the mean and standard deviation variables for each measurement
extractCols <- grep("-mean\\(\\)|-std\\(\\)", names(mergedData))
extractedData <- cbind(mergedData[, extractCols], mergedData[, "activity"], mergedData[, "subject"])
colnames(extractedData) <- c(names(extractedData[1:(length(extractedData)-2)]), c("activity", "subject"))
# name the activities with descriptive activity names - the first tidy data set
activity_labels <- read.table(".\\getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\activity_labels.txt")
colnames(activity_labels) <- c("activity", "activity_label")
finalData1 = merge(extractedData, activity_labels, by="activity", all=TRUE)
finalData1$activity <- NULL
write.table(finalData1, ".\\finalData1.txt", sep="\t")
test1 <- read.table(".\\finalData1.txt")
# calculate the average of each variable for each activity and each subject - the second tidy data set
finalData2 <- aggregate(finalData1[, -((length(extractedData)-1):length(extractedData))], by=list(finalData1$subject, finalData1$activity_label), FUN=mean, na.rm=TRUE)
library(plyr)
names(finalData2)[1:2] <- c("subject_group", "activity_group")
write.table(finalData2, ".\\finalData2.txt", sep="\t")
test2 <- read.table(".\\finalData2.txt")