-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathutils.py
94 lines (74 loc) · 3.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import os
import scipy.misc
from datetime import datetime
import tensorflow as tf
def binarize(images):
return (np.random.uniform(size=images.shape) < images).astype(np.float32)
def generate_samples(sess, X, h, pred, conf, suff):
print("Generating Sample Images...")
n_row, n_col = 10,10
samples = np.zeros((n_row*n_col, conf.img_height, conf.img_width, conf.channel), dtype=np.float32)
# TODO make it generic
labels = one_hot(np.array([0,1,2,3,4,5,6,7,8,9]*10), conf.num_classes)
for i in range(conf.img_height):
for j in range(conf.img_width):
for k in range(conf.channel):
data_dict = {X:samples}
if conf.conditional is True:
data_dict[h] = labels
next_sample = sess.run(pred, feed_dict=data_dict)
if conf.data == "mnist":
next_sample = binarize(next_sample)
samples[:, i, j, k] = next_sample[:, i, j, k]
save_images(samples, n_row, n_col, conf, suff)
def generate_ae(sess, encoder_X, decoder_X, y, data, conf, suff=''):
print("Generating Sample Images...")
n_row, n_col = 10,10
samples = np.zeros((n_row*n_col, conf.img_height, conf.img_width, conf.channel), dtype=np.float32)
if conf.data == 'mnist':
labels = binarize(data.train.next_batch(n_row*n_col)[0].reshape(n_row*n_col, conf.img_height, conf.img_width, conf.channel))
else:
labels = get_batch(data, 0, n_row*n_col)
for i in range(conf.img_height):
for j in range(conf.img_width):
for k in range(conf.channel):
next_sample = sess.run(y, {encoder_X: labels, decoder_X: samples})
if conf.data == 'mnist':
next_sample = binarize(next_sample)
samples[:, i, j, k] = next_sample[:, i, j, k]
save_images(samples, n_row, n_col, conf, suff)
def save_images(samples, n_row, n_col, conf, suff):
images = samples
if conf.data == "mnist":
images = images.reshape((n_row, n_col, conf.img_height, conf.img_width))
images = images.transpose(1, 2, 0, 3)
images = images.reshape((conf.img_height * n_row, conf.img_width * n_col))
else:
images = images.reshape((n_row, n_col, conf.img_height, conf.img_width, conf.channel))
images = images.transpose(1, 2, 0, 3, 4)
images = images.reshape((conf.img_height * n_row, conf.img_width * n_col, conf.channel))
filename = datetime.now().strftime('%Y_%m_%d_%H_%M')+suff+".jpg"
scipy.misc.toimage(images, cmin=0.0, cmax=1.0).save(os.path.join(conf.samples_path, filename))
def get_batch(data, pointer, batch_size):
if (batch_size + 1) * pointer >= data.shape[0]:
pointer = 0
batch = data[batch_size * pointer : batch_size * (pointer + 1)]
pointer += 1
return [batch, pointer]
def one_hot(batch_y, num_classes):
y_ = np.zeros((batch_y.shape[0], num_classes))
y_[np.arange(batch_y.shape[0]), batch_y] = 1
return y_
def makepaths(conf):
ckpt_full_path = os.path.join(conf.ckpt_path, "data=%s_bs=%d_layers=%d_fmap=%d"%(conf.data, conf.batch_size, conf.layers, conf.f_map))
if not os.path.exists(ckpt_full_path):
os.makedirs(ckpt_full_path)
conf.ckpt_file = os.path.join(ckpt_full_path, "model.ckpt")
conf.samples_path = os.path.join(conf.samples_path, "epoch=%d_bs=%d_layers=%d_fmap=%d"%(conf.epochs, conf.batch_size, conf.layers, conf.f_map))
if not os.path.exists(conf.samples_path):
os.makedirs(conf.samples_path)
if tf.gfile.Exists(conf.summary_path):
tf.gfile.DeleteRecursively(conf.summary_path)
tf.gfile.MakeDirs(conf.summary_path)
return conf