-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvae_model.py
91 lines (77 loc) · 3.53 KB
/
vae_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import torch
from torch import nn, optim
from torchviz import make_dot
torch.manual_seed(42)
class VAE(nn.Module):
def __init__(self, input_dim, n_layers=1, activation=nn.ReLU()):
super(VAE, self).__init__()
encoder_layers = []
layer_dims = [input_dim]
layer_dim = 128
for i in range(n_layers):
encoder_layers.append(nn.Linear(layer_dims[-1], layer_dim))
encoder_layers.append(activation)
layer_dims.append(layer_dim) # Save the layer dimension
if i < n_layers - 1: # Decrease the size of the next layer only if it's not the last layer
layer_dim = layer_dim // 2
self.encoder = nn.Sequential(*encoder_layers)
self.output_dim = 3
self.fc_mu = nn.Linear(layer_dims[-1], self.output_dim)
self.fc_var = nn.Linear(layer_dims[-1], self.output_dim)
# Similar for the decoder, but in reverse
decoder_layers = []
layer_dims.reverse() # Reverse the layer dimensions
layer_dims = [self.output_dim] + layer_dims[:-1]
for i in range(n_layers):
decoder_layers.append(nn.Linear(layer_dims[i], layer_dims[i+1]))
decoder_layers.append(activation)
decoder_layers.append(nn.Linear(layer_dims[-1], input_dim)) # Add a final layer to match the input dimension
decoder_layers.append(nn.Sigmoid()) # nn.Sigmoid()
self.decoder = nn.Sequential(*decoder_layers)
def reparametrize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def forward(self, x):
encoded = self.encoder(x)
mu = self.fc_mu(encoded)
logvar = self.fc_var(encoded)
z = self.reparametrize(mu, logvar)
decoded = self.decoder(z)
return mu, logvar, decoded
class VectorReducer:
def __init__(self, df, learning_rate, weight_decay, n_layers, activation, beta, pretrained_model=None):
self.ids = df['ID'].values
self.df = df.drop(columns=['ID', 'name', 'file'])
if pretrained_model is None:
self.model = VAE(self.df.shape[1], n_layers, activation)
else:
self.model = pretrained_model
self.criterion = nn.MSELoss()
self.optimizer = optim.Adam(self.model.parameters(), lr=learning_rate, weight_decay=weight_decay)
self.beta = beta
def kl_divergence(self, mu, logvar):
return -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
def train_vae(self, epochs):
self.df = torch.tensor(self.df.values).float()
for _ in range(epochs):
mu, logvar, output = self.model(self.df)
recon_loss = self.criterion(output, self.df)
kl_loss = self.kl_divergence(mu, logvar)
loss = recon_loss + kl_loss * self.beta
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def vae(self):
with torch.no_grad(): # no need to calculate gradients during evaluation
mu, _, decoded = self.model(self.df)
reduced_data = mu.detach().numpy()
reconstructed_data = decoded.detach().numpy()
# Add back ID as the first element of each sublist
reduced_data_with_ids = np.column_stack((self.ids, reduced_data))
return reduced_data_with_ids, reconstructed_data
def visualize_model(self):
x = torch.randn(1, self.df.shape[1])
mu, _, _ = self.model(x)
return make_dot(mu, params=dict(self.model.named_parameters()))