-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
252 lines (209 loc) · 10.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import argparse
import torch
import numpy as np
import pandas as pd
from copy import deepcopy
from scipy.stats import zscore
import sys
sys.path.append('../')
def parse_boolean(value):
"""Parse boolean values passed as argument"""
value = value.lower()
if value in ["true", "yes", "y", "1", "t"]:
return True
elif value in ["false", "no", "n", "0", "f"]:
return False
return False
def parse_hidden_sizes(value):
"""Create list of int from string of csv"""
return list(map(lambda x: int(x), value.split(",")))
def parse_args():
""" Parse arguments """
parse = argparse.ArgumentParser()
## Run details
parse.add_argument("--m", help="number of time samples", type=int, default=100)
parse.add_argument("--pred_step", help="prediction step", type=int, default=1)
parse.add_argument("--T", help="history length", type=int, default=5)
parse.add_argument("--update_covariance", help="whether to perform covariance update", type=parse_boolean, default=False)
parse.add_argument("--gamma", help="covariance update coefficient", type=float, default=0.1)
parse.add_argument("--tau", help="threshold coefficient tau", type=float, default=1.)
parse.add_argument("--dimNodeSignals", help="sizes of GNN hidden layers", type=parse_hidden_sizes, default=[1,13,13])
parse.add_argument("--dimLayersMLP", help="sizes of MLP hidden layers", type=parse_hidden_sizes, default=[1,1])
parse.add_argument("--filter_taps", help="filter taps", type=int, default=2)
parse.add_argument("--iterations", help="repetitions of the same experiments", type=int, default=1)
parse.add_argument("--n_it", help="number of iterations", type=int, default=10)
parse.add_argument("--online", help="whether to update the model online", type=parse_boolean, default=True)
parse.add_argument("--sparse_tensor", help="whether to use torch sparse tensors or not", type=parse_boolean, default=False)
parse.add_argument("--nEpochs", help="epochs", type=int, default=100)
parse.add_argument("--perms", help="number of permutations", type=int, default=10)
parse.add_argument("--batchSize", help="batch size", type=int, default=1000)
parse.add_argument("--split", help="dataset split", type=int, default=1)
parse.add_argument("--dimOutputSignals", help="dim recurrent output", type=int, default=8)
parse.add_argument("--dimHiddenSignals", help="dim recurrent hidden state", type=int, default=8)
parse.add_argument("--out_file", help="output file", type=str, default=None)
parse.add_argument("--dset", help="dataset", type=str, default="dense")
parse.add_argument("--optimizer", help="optimizer", type=str, default="SGD")
parse.add_argument("--lr", help="learning rate", type=float, default=0.015)
parse.add_argument("--p", help="mean of edge drop probability", type=float, default=0.5)
parse.add_argument("--lr_test", help="learning rate for online test", type=float, default=0.001)
parse.add_argument("--h_size", help="MLP size for TPCA", type=int, default=256)
parse.add_argument("--suffix", help="suffix for some experiments", type=str, default="")
parse.add_argument("--cov_type", help="type of covariance estimator", type=str, default="standard")
args = parse.parse_args()
return args
def create_xy_realdisp(sub_id_list):
T = 128
X, y = [], []
for sub_id in sub_id_list:
print("Subject ", sub_id)
df = pd.read_csv(f"Data/realdisp+activity+recognition+dataset/subject{sub_id}_ideal.log", delim_whitespace=True, header=None)
labels_to_keep = [10, 11, 29, 31, 9, 32, 33, 3, 2, 1]
df = df[df.iloc[:,-1].isin(labels_to_keep)]
all_X, all_y = [], []
labels = df.iloc[:,-1].unique()
for lab in labels:
cur_df = df[df.iloc[:,-1] == lab].to_numpy()[:,2:-1]
if cur_df.shape[0] < T:
continue
X_win, y_win = [], []
for i in range(0, cur_df.shape[0], 64):
if i + T <= cur_df.shape[0]:
window = cur_df[i: i + T]
X_win.append(window)
y_win.append(labels_to_keep.index(lab))
else:
break
all_X.append(np.stack(X_win))
all_y.append(np.array(y_win))
X.append(np.concatenate(all_X, axis=0))
y.append(np.concatenate(all_y, axis=0))
X = np.concatenate(X, axis=0)
y = torch.LongTensor(np.concatenate(y))
s, n = X.shape[1], X.shape[2]
X = torch.FloatTensor(zscore(X.reshape((-1,n)), axis=0).reshape((-1,s,n)))
return X, y
def preprocess_realdisp():
X_train, y_train = create_xy_realdisp([2,3,5,10,13,15,16,17])
X_val, y_val = create_xy_realdisp([4,6,10,11])
X_test, y_test = create_xy_realdisp([1,7,8,9,12,14])
torch.save((X_train, X_val, X_test, y_train, y_val, y_test), "Data/realdisp_preprocess")
def load_realdisp():
try:
X_train, X_val, X_test, y_train, y_val, y_test = torch.load("Data/realdisp_preprocess")
except:
X_train, y_train = create_xy_realdisp([2,3,5,10,13,15,16,17])
X_val, y_val = create_xy_realdisp([4,6,10,11])
X_test, y_test = create_xy_realdisp([1,7,8,9,12,14])
torch.save((X_train, X_val, X_test, y_train, y_val, y_test), "Data/realdisp_preprocess")
return X_train, y_train, X_val, y_val, X_test, y_test
def create_xy_mhealth(sub_id_list):
T = 128
X, y = [], []
col_to_keep = [0,1,2,5,6,7,8,9,10,14,15,16,17,18,19]
for sub_id in sub_id_list:
df = pd.read_csv(f"Data/MHEALTHDATASET/mHealth_subject{sub_id}.log", sep='\t', header=None)
df = df[df.iloc[:,-1] != 0]
s = df.to_numpy()[:,col_to_keep]
all_X, all_y = [], []
labels = df.iloc[:,-1].unique()
for lab in labels:
cur_df = df[df.iloc[:,-1] == lab].to_numpy()[:,::-1]
X_win, y_win = [], []
for i in range(0, cur_df.shape[0], T//2):
if i + T <= cur_df.shape[0]:
window = cur_df[i: i + T]
X_win.append(window)
y_win.append(lab)
else:
break
all_X.append(np.stack(X_win))
all_y.append(np.array(y_win))
X.append(np.concatenate(all_X, axis=0))
y.append(np.concatenate(all_y, axis=0))
X = np.concatenate(X, axis=0)
y = torch.LongTensor(np.concatenate(y)-1)
s, n = X.shape[1], X.shape[2]
X = torch.FloatTensor(zscore(X.reshape((-1,n)), axis=0).reshape((-1,s,n)))
return X, y
def load_mhealth():
X_train, y_train = create_xy_mhealth([1,3,4,5,7,8])
X_val, y_val = create_xy_mhealth([6,10])
X_test, y_test = create_xy_mhealth([2,9])
return X_train, y_train, X_val, y_val, X_test, y_test
def compute_accuracy(output, target):
output_labels = torch.where(output > 0, 1., 0.)
correct = output_labels.eq(target).double()
# print(f"Correct 1: {(output_labels[target == 1] == 1).sum()} Correct 0: {(output_labels[target == 0] == 0).sum()}")
return (correct.sum() / target.shape[0]).item()
def compute_multiclass_accuracy(output, target):
preds = output.argmax(1).type_as(target)
correct = preds.eq(target).double()
correct = correct.sum()
return correct / len(target)
def load_epilepsy():
x = np.load("Data/epilepsy/x_epilepsy.npy")
y = torch.FloatTensor(np.load("Data/epilepsy/y_epilepsy.npy"))
if len(x.shape) == 3:
x = torch.FloatTensor(zscore(x, axis=0))
else:
x = torch.FloatTensor(zscore(np.load("Data/epilepsy/x_epilepsy.npy"), axis=0))
return x,y
def load_cni():
x_train = np.load("Data/CNI/x_train.npy")
x_test = np.load("Data/CNI/x_test.npy")
s, n = x_train.shape[1], x_train.shape[2]
x_train = torch.FloatTensor(zscore(x_train.reshape((-1,n)), axis=0).reshape((-1,s,n)))
s, n = x_test.shape[1], x_test.shape[2]
x_test = torch.FloatTensor(zscore(x_test.reshape((-1,n)), axis=0).reshape((-1,s,n)))
y_train = torch.FloatTensor(np.load("Data/CNI/y_train.npy"))
y_test = torch.FloatTensor(np.load("Data/CNI/y_test.npy"))
return x_train,x_test,y_train,y_test
def load_data(dset):
if dset == "SmallCov":
df = pd.read_csv('Data/SmallCov.csv')
elif dset == "LargeCov":
df = pd.read_csv('Data/LargeCov.csv', index_col=0)
elif dset == "SparseCov":
df = pd.read_csv('Data/SparseCov.csv', index_col=0)
x_input = df.iloc[:,:-1].to_numpy()
y_output = df.iloc[:,-1].to_numpy()
return x_input, y_output
def sparsify_covariance(C, cov_type, thr=0.0, p=0.1, sparse_tensor=False):
if cov_type == "standard":
C_sparse = C
elif cov_type == "RCV":
# Generate probability values
sigma = min((1-p)/3, p/3)
lim_prob = np.linspace(0,1,1000)
distr_prob = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-0.5 * ((lim_prob-p)/sigma)**2)
distr_prob = distr_prob / distr_prob.sum()
prob_values = np.random.choice(lim_prob, p=distr_prob, size=C.shape[0] ** 2)
prob_values = torch.FloatTensor(np.sort(prob_values))
# Assign probability values
sorted_idx = torch.argsort(C.abs().flatten())
prob = torch.zeros([C.shape[0] ** 2,]).float().scatter_(0, sorted_idx, prob_values)
prob = prob.reshape(C.shape)
prob[torch.eye(prob.shape[0]).long()] = 1 # no removal on the diagonal
# Drop edges symmetrically
mask = torch.rand(C.shape) <= prob
triu = torch.triu(torch.ones(C.shape), diagonal=0).bool()
mask = mask * triu + mask.t() * ~triu # make resulting matrix symmetric
C_sparse = torch.where(mask, C, 0)
elif cov_type == "ACV":
prob = C.abs() / C.abs().max()
prob[torch.eye(prob.shape[0]).long()] = 1 # no removal on the diagonal
mask = torch.rand(C.shape) <= prob
triu = torch.triu(torch.ones(C.shape), diagonal=0).bool()
mask = mask * triu + mask.t() * ~triu # make resulting matrix symmetric
C_sparse = torch.where(mask, C, 0)
elif cov_type == "hard_thr":
C_sparse = torch.where(C.abs() > thr, C, 0)
elif cov_type == "soft_thr":
C_sparse = torch.where(C.abs() > thr, C - (C>0).float()*thr, 0)
if sparse_tensor:
return C_sparse.to_sparse()
return C_sparse
def compute_covariance(X, cov_type, thr=0.0, p=0.0):
C = torch.cov(X)
C_sparse = sparsify_covariance(C, cov_type, thr, p)
return C_sparse