-
Notifications
You must be signed in to change notification settings - Fork 4
/
lib_gch.py
691 lines (526 loc) · 24.7 KB
/
lib_gch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
import numpy as np
import random
from sklearn.linear_model import Ridge as ridgereg
import time
from scipy.spatial.distance import pdist,squareform
from scipy.linalg import eigh as EIGH
from scipy.spatial import ConvexHull as chull
import linecache
import os
from ase.io import read,write
import time
from scipy.spatial import ConvexHull as chull
from scipy.interpolate import griddata as sing
from scipy.special import erfcinv,erfinv
import multiprocessing
## ============================================================================
## GCH core functions
## ============================================================================
def get_refgch(pfile, inrg=0, cols=[]):
"""
[[pfile]] : matrix : energy + kpca
ndim : number of dimensions of the low dimensional hull we use as reference
inrg : index of energy column
[cols ] : list : list of indices of columns of pfile to be used for the LD hull construction
"""
data = pfile[:,cols]
ndim = len(cols)
nresdim = len(pfile[0,ndim::])
hull = chull(data)
HD_kpca = pfile[:,ndim::]
snormals = hull.equations[:,0:ndim]
sshifts = hull.equations[:,ndim]
vlist = hull.vertices
if inrg >= 0 : # discards points that face down in the given direction
slist = hull.simplices
vlist = np.asarray([], int)
for i in xrange(len(slist)):
if snormals[i,inrg] < 0.:
vlist = np.union1d(vlist, slist[i])
ns = len(sshifts)
nd = len(data)
ss = np.zeros((nd),dtype='int')
projs = np.zeros((nd,ndim-1),dtype='float')
interp_HDkpca = np.zeros((nd,pfile.shape[1]-ndim),dtype='float')
elist = np.ones((len(data),2))*1e100
sigma_s = np.zeros((nd,nresdim),dtype='float') ### Structural variance in the higher dimensions
#sigma_s = np.zeros((nd),dtype='float') ### Structural variance in the higher dimensions
for i in xrange(ns): # this is a loop over the simplices forming the boundary of the hull
inrm = snormals[i]
# if we are computing a purely structural chull (no energy column given)
# or if we are on the downward-looking energy face of the chull (inrm[inrg]<0)
# then we must consider this facet
if inrg<0 or inrm[inrg] < 0.:
for j in xrange(len(data)):
dij = -(np.dot(inrm,data[j])+sshifts[i]) # this is the (signed) distance of the point j from the i-th simplex
if np.abs(dij) < 1e-8: dij = 0
if elist[j,0]>dij:
elist[j,0] = dij
if inrg>=0: # this is the vertical distance from the simplex along the energy direction
dz = -dij/inrm[inrg]
if elist[j,1]>dz:
elist[j,1]=dz
ss[j] = i
projs[j] = data[j,1::]
cntr = elist[:,1]
for at in xrange(len(data)):
if at in vlist :
sigma_s[at] = 0.
else :
interp_HDkpca[at] = sing(data[hull.simplices[ss[at]],1::],HD_kpca[hull.simplices[ss[at]]],projs[at],method='linear')
sigma_s[at] = HD_kpca[at]-interp_HDkpca[at]
#sigma_s[at] = np.linalg.norm(HD_kpca[at]-interp_HDkpca[at])
# normalize sigma_si
if(sigma_s.any()!=0.0):
sigma_s /= max(np.linalg.norm(sigma_s,axis=0))
#sigma_s /= max(sigma_s)
return vlist,cntr,sigma_s
def get_gch(pfile, inrg=0, cols=[]):
"""
[[pfile]] : matrix : energy + kpca
ndim : number of dimensions of the low dimensional hull we use as reference
inrg : index of energy column
[cols ] : list : list of indices of columns of pfile to be used for the LD hull construction
"""
data = pfile[:,cols]
ndim = len(cols)
nresdim = len(pfile[0,ndim::])
hull = chull(data)
HD_kpca = pfile[:,ndim::]
snormals = hull.equations[:,0:ndim]
vlist = hull.vertices
if inrg >= 0 : # discards points that face down in the given direction
slist = hull.simplices
vlist = np.asarray([], int)
for i in xrange(len(slist)):
if snormals[i,inrg] < 0.:
vlist = np.union1d(vlist, slist[i])
nd = len(data)
projs = data[:,1::]
interp_HDkpca = np.zeros((nd,pfile.shape[1]-ndim),dtype='float')
elist = np.ones((len(data),2))*1e100
sigma_s = np.zeros((nd,nresdim),dtype='float') ### Structural variance in the higher dimensions
#sigma_s = np.zeros((nd),dtype='float') ### Structural variance in the higher dimensions
for at in xrange(len(data)):
if at in vlist :
sigma_s[at] = 0.
else :
interp_HDkpca[at] = sing(data[vlist,1::],HD_kpca[vlist],projs[at],method='linear')
sigma_s[at] = HD_kpca[at]-interp_HDkpca[at]
#sigma_s[at] = np.linalg.norm(HD_kpca[at]-interp_HDkpca[at])
# normalize sigma_s
if(sigma_s.any()!=0.0):
sigma_s /= max(np.linalg.norm(sigma_s,axis=0))
return vlist,sigma_s
def eval_sampled_sigmaKPCA(refids,nsamples,wdir):
"""
[[pfile]] : mat : energy + kpca
[refids] : list : ids of reference sample structures from which
shaken structures were generated
nsamples : scalar : number of shaken structures per reference
wdir : string : path to directory for saving shaken structs
"""
# kpcaref = pfile[refids,1::]
kpcaoos = np.load(wdir + '/shaketraj.npy')
# initialize varKPCA
varKPCA = kpcaoos[0,:] * 0.
for iref in xrange(len(refids)) :
samplesi = iref * (nsamples+1)
samplesf = (iref + 1) * (nsamples+1) - 1
#dkpca = kpcaoos[samplesi+1:samplesf,:] - kpcaref[iref,:]
dkpca = kpcaoos[samplesi+1:samplesf,:] - kpcaoos[samplesi,:]
var = np.var(dkpca,axis=0)
varKPCA += var
sigmaKPCA = np.sqrt(varKPCA/len(refids))
return sigmaKPCA
def estimate_residual_sigmaE(pfile):
"""
[[pfile]] : mat : energy + kpca
[cols ] : list : list of indices of columns of pfile to be used for the LD hull construction
"""
# estimate energy response to all KPCA descriptors using ridge regression
rr = ridgereg()
rr.fit(pfile[:,1::],pfile[:,0])
epsilon = rr.coef_
return epsilon
## ============================================================================
## GCH initialisation functions
## ============================================================================
def create_samples_sigmaKPCA(pxyz,sigma_cell,refstructids,nsamples,wdir):
"""
* needs ASE
pxyz : string : path to the xyz-dataset
sigma_pos : scalar : absolute (!) uncertainty in cartesian coordinates
sigma_cell : scalar : fractional (!) uncertainty in lattice vectors
[refstructids] : list : list of reference structures to be randomised for
estimation of sigmaKPCA (uncertainty on structural descriptors)
nsamples : scalar : number of sample randomised structures per reference structure
wdir : string : path to directory for saving shaken structs
"""
#dbqorig = quippy.AtomsList(pxyz)
dbaorig = read(pxyz,index=':')
dba = [dbaorig[int(iref)] for iref in refstructids]
#We save the refstruct.idx as a sanity check
np.savetxt(wdir + '/refstruct.idx',refstructids,fmt='%i')
# evaluate sensible uncertainty in atomic positions given an uncertainty in the cell parameters
vav = np.average( [ dba[n_ref].get_volume()/dba[n_ref].get_number_of_atoms() for n_ref in xrange(len(dba)) ] )
sigma_pos = sigma_cell * np.cbrt(vav)
print 'Uncertainty in Cartesian positions',sigma_pos
shaketrajfull = []
for n_ref in xrange(len(dba)):
shaketraj = []
shaketraj.append(dba[n_ref])
shaketrajfull.append(dba[n_ref])
for n_sample in xrange(nsamples) :
shakeat = dba[n_ref].copy()
# jitter cell
cell = shakeat.cell
ran = np.random.normal(np.zeros((3,3)),sigma_cell)
cell += cell * ran
shakeat.set_cell(cell,scale_atoms=True)
# jitter atoms
shakeat.rattle(sigma_pos,n_sample)
shaketraj.append(shakeat)
shaketrajfull.append(shakeat)
# write trajectory of shaken structs corresponding to reference structure n_ref to file
write(wdir + '/shaketraj.' + str(n_ref) + '.xyz',shaketraj)
# write trajectory of shaken structs to file
write(wdir + '/shaketraj.xyz',shaketrajfull)
return
def initialize_random_sample_GCH(pfile,pxyz,sigma_cell,nref,nshaken,wdir,inrg=0,cols=[]):
"""
[[pfile]] : mat : energy + kpca
pxyz : string : path to the xyz-dataset
sigma_cell : scalar : fractional uncertainty in lattice vectors
nref : scalar : number of reference structures for sampling of KPCA uncertainties
nshaken : scalar : number of shaken structures per reference
wdir : string : working directory for generation of rattled structure for
sampling of KPCA uncertainties
inrg : scalar : index of energy column in pfile
[cols] : list : list of indices of KPCA descriptors to be used in GCH construction
* needs numpy.special.erfinv
* note that embedding (nref * nshaken) structures OOS quickly requires a whole lot of memory
"""
import random
ien = inrg
columns = cols
# prepare reduction of dataset by constructing reference GCH
v,contour,s = get_refgch(pfile,ien,columns)
refids = random.sample(range(len(pfile)),nref)
refids = np.array([int(rid) for rid in refids])
# prepare sample structures for estimate uncertainty in KPCA descriptors
# for jittering in sampling fuzzy GCH
create_samples_sigmaKPCA(pxyz,sigma_cell,refids,nshaken,wdir)
return refids
def initialize_fps_sample_GCH(pfile,fps_idx,pxyz,sigma_cell,nref,nshaken,wdir,inrg=0,cols=[]):
"""
[[pfile]] : mat : energy + kpca
pxyz : string : path to the xyz-dataset
sigma_cell : scalar : fractional uncertainty in lattice vectors
nref : scalar : number of reference structures for sampling of KPCA uncertainties
nshaken : scalar : number of shaken structures per reference
wdir : string : working directory for generation of rattled structure for
sampling of KPCA uncertainties
inrg : scalar : index of energy column in pfile
[cols] : list : list of indices of KPCA descriptors to be used in GCH construction
* needs numpy.special.erfinv
* note that embedding (nref * nshaken) structures OOS quickly requires a whole lot of memory
* note that it needs to have the fps index files stored in the wdir
"""
import random
ien = inrg
columns = cols
# prepare reduction of dataset by constructing reference GCH
v,contour,s = get_refgch(pfile,ien,columns)
#refids = random.sample(range(len(pfile)),nref)
refids = fps_idx
[int(rid) for rid in refids]
# prepare sample structures for estimate uncertainty in KPCA descriptors
# for jittering in sampling fuzzy GCH
create_samples_sigmaKPCA(pxyz,sigma_cell,refids,nshaken,wdir)
return refids
## ============================================================================
## GCH SAMPLING ROUTINES
## ============================================================================
def sample_GCH(pfile,sigma_ev,sigma_etot,epsilon,sigma_s,sigma_KPCA,convthresh,refids,nshaken,wdir,inrg,cols):
"""
[[pfile]] : mat : energy + kpca
sigma_ev : scalar : DFT uncertainty in total/absolute energies
convthresh : scalar : measure of smallest vertex probabilities to be resolved
[refids] : list : ids of reference structures for sampling of KPCA uncertainties
nshaken : scalar : number of shaken structures per reference
wdir : string : working directory for generation of rattled structure for
sampling of KPCA uncertainties
inrg : scalar : index of energy column in pfile
[cols] : list : list of indices of KPCA descriptors to be used in GCH
construction
"""
ndim = len(cols)
nresdim = len(pfile[0,ndim::])
# calculate number of GCHs to be sampled
N = int(100./convthresh)
# initialize vertex scores for reduced dataset at zero
vertex_scores = np.zeros((len(pfile)),dtype='int')
vertex_list = np.zeros((len(pfile),N),dtype='int')
vertex_prob = np.zeros((len(pfile)),dtype='float')
vertex_prob_prev = np.zeros((len(pfile)),dtype='float')
# sample GCH
# every candidate with probability>convthresh should have come up
# around 100 times leaving the remnant uncertainty of the order of 1%
for n in xrange(N):
## draw stabilities for all structures (within threshold of reference GCH) from Gaussian distr
# update umcertainty in nrg according to previous GCH
# Here:
# -- dEDFT is the DFT error in energy
# -- epsilon_i = RMS( dE/d\phi_i ) measures the typical energy
# response to variation of KPCA component i,
# -- stdev(E) is the standard deviation in DFT energies across the
# dataset (as a measure of the overall energy response to all
# KPCA descriptors)
# -- s = |{\bf s}| is the interpolatability/independence score and
# s_i measures the distance of a given structure X from the ideally
# interpolated counterpart X_GCH alond the i-th KPCA component (i>n)
sigma = np.sqrt ( np.sum(np.square(sigma_s * epsilon),axis=1) ) / sigma_etot * sigma_ev
# randomise nrg and kpca according to updated uncertainties
# EAE : we only really need to update the kpca descriptors used for the GCH construction --> QUICKER
nrg = np.random.normal(pfile[:,0],sigma[:])
kpc = np.zeros((pfile[:,1::].shape))
kpc = np.random.normal(kpc,1)
kpc *= sigma_KPCA
kpc += pfile[:,1::]
# update input for GCH with randomised nrg
tmp_pfile = np.column_stack((nrg,kpc))
# construct new GCH for updated/randomised nrg
v,sigma_s = get_gch(tmp_pfile,inrg,cols)
vertex_scores[v] += 1
vertex_list[v,n] = 1
# evaluate probabilities r_vertex_prob based on r_vertex_scores/n
#r_vertex_prob = r_vertex_scores*1./n
vertex_prob = vertex_scores*1./(n+1)
if ( (n+1)%200 == 0 ) :
print "Iteration : ",n+1," in ",N
return vertex_prob,vertex_list
def parallel_sample_GCH(rrank):
"""
[[pfile]] : mat : energy + kpca
sigma_ev : scalar : DFT uncertainty in total/absolute energies
nstart : scalar : number of first sample GCH to be generated
nfinish : scalar : number of final sample GCH to be generated
[refids] : list : ids of reference structures for sampling of KPCA uncertainties
nshaken : scalar : number of shaken structures per reference
wdir : string : working directory for generation of rattled structure for
sampling of KPCA uncertainties
inrg : scalar : index of energy column in pfile
[cols] : list : list of indices of KPCA descriptors to be used in GCH
construction
"""
nstart = rrank*Npp
nfinish = nstart + Npp - 1
np.random.seed(nstart)
ndim = len(cols)
nresdim = len(r_pfile[0,ndim::])
# calculate number of GCHs to be sampled
#N = int(100./convthresh)
# initialize vertex scores for reduced dataset at zero
vertex_scores = np.zeros((len(r_pfile)),dtype='int')
#vertex_list = np.zeros((len(r_pfile),Npp),dtype='int')
vertex_prob = np.zeros((len(r_pfile)),dtype='float')
vertex_prob_prev = np.zeros((len(r_pfile)),dtype='float')
# sample GCH
# every candidate with probability>convthresh should have come up
# around 100 times leaving the remnant uncertainty of the order of 1%
for n in xrange(nstart,nfinish):
## draw stabilities for all structures (within threshold of reference GCH) from Gaussian distr
# update umcertainty in nrg according to previous GCH
# Here:
# -- dEDFT is the DFT error in energy
# -- epsilon_i = RMS( dE/d\phi_i ) measures the typical energy
# response to variation of KPCA component i,
# -- stdev(E) is the standard deviation in DFT energies across the
# dataset (as a measure of the overall energy response to all
# KPCA descriptors)
# -- s = |{\bf s}| is the interpolatability/independence score and
# s_i measures the distance of a given structure X from the ideally
# interpolated counterpart X_GCH alond the i-th KPCA component (i>n)
sigma = np.sqrt ( np.sum(np.square(l_r_sigma_s[rrank] * epsilon),axis=1) ) / sigma_etot * sigma_e
# randomise nrg and kpca according to updated uncertainties
# EAE : we only really need to update the kpca descriptors used for the GCH construction --> QUICKER
nrg = np.random.normal(r_pfile[:,0],sigma[:])
kpc = np.zeros((r_pfile[:,1::].shape))
kpc = np.random.normal(kpc,1)
kpc *= sigma_KPCA
kpc += r_pfile[:,1::]
# update input for GCH with randomised nrg
tmp_pfile = np.column_stack((nrg,kpc))
# construct new GCH for updated/randomised nrg
v,l_r_sigma_s[rrank] = get_gch(tmp_pfile,inrg,cols)
vertex_scores[v] += 1
#vertex_list[v,n] = 1
# evaluate probabilities r_vertex_prob based on r_vertex_scores/n
#r_vertex_prob = r_vertex_scores*1./n
vertex_prob = vertex_scores*1./Npp
#if ( (n+1)%200 == 0 ) :
# print "Iteration : ",n+1," in ",N
return vertex_prob
def prune_GCH(pfile,sigma_ev,convthresh,refids,nshaken,wdir,inrg=0,cols=[0,1],minprob=0.5,restart=False):
origids = np.array(range(len(pfile)))
# INITIAL REDUCTION OF DATASET
# prepare reduction of dataset by constructing reference GCH
t0=time.time()
v,contour,sigma_s = get_refgch(pfile,inrg,cols)
t1=time.time()
print 'GCH construction : ',t1-t0,' sec'
# reduce data by thresholding stabilites according to max(sigma)
m = erfinv(1.-convthresh)*np.sqrt(2.)
sigma = np.linalg.norm(sigma_s,axis=0)*sigma_ev # baseline energy uncertainty to be
# used in dataset reduction before GCH sampling
if restart==False:
r_sigma_e = np.zeros((len( np.where(contour < m*max(sigma))[0] ))) + sigma_ev
r_sigma_s = sigma_s[np.where(contour < m*max(sigma))[0]]
r_pfile = pfile[np.where(contour < m*max(sigma))[0]]
origids = origids[np.where(contour < m*max(sigma))[0]]
else:
r_sigma_e = np.zeros((len(sigma))) + sigma_ev
r_sigma_s = np.zeros((sigma_s.shape)) + 0.1
r_pfile = pfile.copy()
# BUILDING ONE MORE REFGCH JUST TO GIVE AN IDEA
# OF TIME PER CONVEX HULL AFTER SCREENING
t0 = time.time()
get_refgch(r_pfile,inrg,cols)
t1 = time.time()
print "Single Hull construction during before pruning : ", t1-t0, " sec"
##
# estimate uncertainty in KPCA descriptors for shaking in fuzzy GCH
# sigmaKPCA = np.zeros((32)) + 0.01
sigma_KPCA = eval_sampled_sigmaKPCA(refids,nshaken,wdir)
# evaluate the energy response epsilon to changes in the KPCA
# descriptors: dE = epsilon_i phi_i
ndim = len(cols) # number of KPCA descriptors on which the GCH is built
epsilon = estimate_residual_sigmaE(pfile)[ndim-1::]
sigma_etot = np.std(pfile[:,0])
# SAMPLE GCH
r_vprob,r_vlist = sample_GCH(r_pfile,sigma_ev,sigma_etot,epsilon,r_sigma_s,sigma_KPCA,convthresh,refids,nshaken,wdir,inrg,cols)
## initialize vertex probabilities for full dataset at zero
f_vprob = np.zeros((len(pfile)),dtype='float')
## translate ids in reduced dataset to full dataset and
## update vertex scores for full dataset at zero with entries from vertex scores for reduced dataset
if restart==False:
f_vprob[np.where(contour < m*max(sigma))] = r_vprob
else:
f_vprob = r_vprob.copy()
vprobprune = []
vprobprune.append(f_vprob)
rr_vprob = r_vprob
rr_vlist = r_vlist
rr_pfile = r_pfile
rr_sigma_s = r_sigma_s
nprune = 0
# LOOP
#for nprune in xrange(Nprune):
mp = 0.0
print(" Let's start pruning! ")
while mp < minprob:
# REDUCTION OF DATASET
# sort ids according to their vprob
vids_sorted = np.argsort(rr_vprob)
vprob_sorted = rr_vprob[vids_sorted]
# number of struct to be pruned
vprob_cumul = np.cumsum(vprob_sorted)
rr_n = len(np.where(vprob_cumul < 1.0)[0])
vids_remain = vids_sorted[rr_n::]
rr_pfile = rr_pfile[vids_remain]
rr_sigma_s = rr_sigma_s[vids_remain]
rr_vids = vids_remain
print "printing rr_pfile.shape"
print rr_pfile.shape
origids = origids[rr_vids]
# SAMPLE GCH
rr_vprob,rr_vlist = sample_GCH(rr_pfile,sigma_ev,sigma_etot,epsilon,rr_sigma_s,sigma_KPCA,convthresh,refids,nshaken,wdir,inrg,cols)
## initialize vertex probabilities for full dataset at zero
f_vprob = np.zeros((len(pfile)),dtype='float')
f_vprob[origids] = rr_vprob
vprobprune.append(f_vprob)
mp = min(f_vprob[f_vprob>0.0])
print mp
print "Pruning iter : ",nprune+1," min prob: ",mp," # vertex : ",len(np.where(vprobprune[-1]>0.0)[0])
nprune +=1
return vprobprune
def parallel_prune_GCH(pfile,refids,nshaken,wdir,Nprune,inrg=0,cols=[],nproc=1,convth=0.1):
global l_r_sigma_s
global r_pfile
global epsilon
global sigma_etot
global sigma_KPCA
global sigma
global sigma_c
global sigma_e
origids = np.array(range(len(pfile)))
# INITIAL REDUCTION OF DATASET
# prepare reduction of dataset by constructing reference GCH
t0=time.time()
v,contour,sigma_s = get_refgch(pfile,inrg,cols)
t1=time.time()
print 'GCH construction : ',t1-t0,' sec'
# reduce data by thresholding stabilites according to max(sigma)
m = erfinv(1.-convth)*np.sqrt(2.)
sigma = np.linalg.norm(sigma_s,axis=0)*sigma_e # baseline energy uncertainty to be
# used in dataset reduction before GCH sampling
r_sigma_e = np.zeros((len( np.where(contour < m*max(sigma))[0] ))) + sigma_e
r_sigma_s = sigma_s[np.where(contour < m*max(sigma))[0]]
r_pfile = pfile[np.where(contour < m*max(sigma))[0]]
origids = origids[np.where(contour < m*max(sigma))[0]]
# estimate uncertainty in KPCA descriptors for shaking in fuzzy GCH
# sigmaKPCA = np.zeros((32)) + 0.01
sigma_KPCA = eval_sampled_sigmaKPCA(refids,nshaken,wdir)
# evaluate the energy response epsilon to changes in the KPCA
# descriptors: dE = epsilon_i phi_i
ndim = len(cols) # number of KPCA descriptors on which the GCH is built
epsilon = estimate_residual_sigmaE(pfile)[ndim-1::]
sigma_etot = np.std(pfile[:,0])
# SAMPLE GCH
# calculate number of GCHs to be sampled
l_r_sigma_s =[r_sigma_s for i in rank]
#l_r_vprob = [np.zeros((len(r_pfile[:,1]))) for i in rank ]
# Maps the sampleGCH routine to nproc processors
pool = multiprocessing.Pool(processes=nproc)
l_r_vprob = pool.map(parallel_sample_GCH,rank)
## Averages the probabilities accumulated in the nproc samples
r_vprob = (np.sum(l_r_vprob,0))/nproc
pool.close()
## initialize vertex probabilities for full dataset at zero
f_vprob = np.zeros((len(pfile)),dtype='float')
## translate ids in reduced dataset to full dataset and
## update vertex scores for full dataset at zero with entries from vertex scores for reduced dataset
f_vprob[np.where(contour < m*max(sigma))] = r_vprob
vprobprune = []
vprobprune.append(f_vprob)
#rr_vprob = r_vprob
#rr_vlist = r_vlist
#rr_pfile = r_pfile
#rr_sigma_s = r_sigma_s
# LOOP
for nprune in xrange(Nprune):
# REDUCTION OF DATASET
# sort ids according to their vprob
vids_sorted = np.argsort(r_vprob)
vprob_sorted = r_vprob[vids_sorted]
# number of struct to be pruned
vprob_cumul = np.cumsum(vprob_sorted)
r_n = len(np.where(vprob_cumul < 1.0)[0])
vids_remain = vids_sorted[r_n::]
r_pfile = r_pfile[vids_remain]
l_r_sigma_s = [l_r_sigma_s[i][vids_remain] for i in rank]
r_vids = vids_remain
origids = origids[r_vids]
# SAMPLE GCH
pool = multiprocessing.Pool(processes=nproc)
l_r_vprob = pool.map(parallel_sample_GCH,rank)
r_vprob = (np.sum(l_r_vprob,0))/nproc
pool.close()
## initialize vertex probabilities for full dataset at zero
f_vprob = np.zeros((len(pfile)),dtype='float')
f_vprob[origids] = r_vprob
vprobprune.append(f_vprob)
print "Pruning iter : ",nprune+1," in ",Nprune
np.savetxt('vprobprune.dat',vprobprune)
return vprobprune