forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunction_schema.h
259 lines (233 loc) · 7.63 KB
/
function_schema.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#pragma once
#include <ATen/core/jit_type.h>
#include <ATen/core/interned_strings.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/alias_info.h>
#include <unordered_map>
namespace c10 {
// schema as used in the compiler for resolving function calls and reporting
// errors. These objects should be constructed from C10 schema once those
// are available.
struct Argument {
Argument(
std::string name = "",
TypePtr type = nullptr,
c10::optional<int32_t> N = c10::nullopt,
c10::optional<IValue> default_value = c10::nullopt,
bool kwarg_only = false,
c10::optional<AliasInfo> alias_info = c10::nullopt,
bool is_inferred_type = false)
: name_(std::move(name)),
type_(type ? type : TensorType::get()),
N_(std::move(N)),
default_value_(std::move(default_value)),
kwarg_only_(kwarg_only),
alias_info_(std::move(alias_info)),
is_inferred_type_(is_inferred_type) {
if (default_value_ && default_value_->isTensor()) {
auto t = default_value_->toTensor();
AT_ASSERT(!t.defined() || t.is_variable());
}
}
const std::string& name() const {
return name_;
}
TypePtr type() const {
return type_;
}
c10::optional<int32_t> N() const {
return N_;
}
const c10::optional<IValue>& default_value() const {
return default_value_;
}
bool kwarg_only() const {
return kwarg_only_;
}
const c10::optional<AliasInfo>& alias_info() const {
return alias_info_;
}
bool is_inferred_type() const {
return is_inferred_type_;
}
std::string formatTypeMismatchMsg(const std::string& actual_type) const {
std::string inferred_type_hint;
if (is_inferred_type()) {
inferred_type_hint = c10::str(
"Inferred '",
name(),
"' to be of type 'Tensor' ",
"because it was not annotated with an explicit type.\n");
}
return c10::str(
"Expected a value of type '",
type()->python_str(),
"' for argument '",
name(),
"' but instead found type '",
actual_type,
"'.\n",
inferred_type_hint);
}
Argument cloneWithType(TypePtr new_type) const {
return Argument(name_, new_type, N_, default_value_, kwarg_only_, alias_info_);
}
private:
std::string name_;
TypePtr type_;
// for list types, an optional statically known length for the list
// e.g. for int[3]: type = ListType::ofInts(), N = 3
// If present, this will allow scalars to be broadcast to this length to
// become a list.
c10::optional<int32_t> N_;
c10::optional<IValue> default_value_;
// is this only specifyable as a keyword argument?
bool kwarg_only_;
c10::optional<AliasInfo> alias_info_;
bool is_inferred_type_;
};
namespace detail {
inline bool defaultValueEquals_(const c10::optional<IValue>& lhs, const c10::optional<IValue>& rhs) {
if (lhs.has_value()) {
return rhs.has_value() && impl::shallowEquals(*lhs, *rhs);
} else {
return !rhs.has_value();
}
}
}
inline bool operator==(const Argument& lhs, const Argument& rhs) {
return lhs.name() == rhs.name()
&& lhs.type() == rhs.type()
&& lhs.N() == rhs.N()
&& detail::defaultValueEquals_(lhs.default_value(), rhs.default_value())
&& lhs.kwarg_only() == rhs.kwarg_only()
&& lhs.alias_info() == rhs.alias_info();
}
struct OperatorName final {
std::string name;
std::string overload_name;
};
struct FunctionSchema {
FunctionSchema(
std::string name,
std::string overload_name,
std::vector<Argument> arguments,
std::vector<Argument> returns,
bool is_vararg = false,
bool is_varret = false)
: name_({std::move(name), std::move(overload_name)}),
arguments_(std::move(arguments)),
returns_(std::move(returns)),
is_vararg_(is_vararg),
is_varret_(is_varret) {}
FunctionSchema(
Symbol name,
std::string overload_name,
std::vector<Argument> arguments,
std::vector<Argument> returns,
bool is_vararg = false,
bool is_varret = false)
: FunctionSchema(
name.toQualString(),
std::move(overload_name),
std::move(std::move(arguments)),
std::move(std::move(returns)),
is_vararg,
is_varret) {}
private:
OperatorName name_;
std::vector<Argument> arguments_;
std::vector<Argument> returns_;
// if true then this schema takes an arbitrary number of additional arguments
// after the argument specified in arguments
// currently this is used primarily to represent 'primtive' operators whose
// arguments are not checked by schema
bool is_vararg_;
bool is_varret_;
void checkArg(const IValue& value, const Argument& argument, optional<size_t> pos) const;
public:
const OperatorName& operator_name() const {
return name_;
}
const std::string& name() const {
return name_.name;
}
const std::string& overload_name() const {
return name_.overload_name;
}
const std::vector<Argument>& arguments() const {
return arguments_;
}
const std::vector<Argument>& returns() const {
return returns_;
}
bool is_vararg() const {
return is_vararg_;
}
bool is_varret() const {
return is_varret_;
}
bool is_mutable() const {
// see [custom operator aliasing]
const auto kind = Symbol::fromQualString(name_.name);
const auto is_custom_op = !kind.is_aten() && !kind.is_prim();
return is_custom_op ||
std::any_of(
arguments_.cbegin(), arguments_.cend(), [](const Argument& arg) {
const auto& aliasInfo = arg.alias_info();
return aliasInfo && aliasInfo.value().isWrite();
});
}
c10::optional<int> argumentIndexWithName(const std::string& name) const {
for(size_t i = 0; i < arguments().size(); ++i) {
if(name == arguments()[i].name())
return i;
}
return c10::nullopt;
}
FunctionSchema cloneWithArguments(std::vector<Argument> new_arguments) const {
return FunctionSchema(
name(),
overload_name(),
std::move(new_arguments),
returns(),
is_vararg(),
is_varret());
}
std::string formatTypeMismatchMsg(
const Argument& expected,
const std::string& actual_type,
c10::optional<size_t> position = c10::nullopt,
c10::optional<std::string> value = c10::nullopt) const;
FunctionSchema cloneWithRemappedTypes(
const std::function<TypePtr(TypePtr)> type_map) const;
// Check that inputs have the correct types and appends any missing default
// values.
void checkAndNormalizeInputs(
std::vector<IValue>& inputs,
const std::unordered_map<std::string, IValue>& kwargs) const;
void findErrorInKwargs(const std::vector<std::string>& kwargs) const;
};
inline bool operator==(const FunctionSchema& lhs, const FunctionSchema& rhs) {
return lhs.name() == rhs.name()
&& lhs.overload_name() == rhs.overload_name()
&& lhs.arguments() == rhs.arguments()
&& lhs.returns() == rhs.returns()
&& lhs.is_vararg() == rhs.is_vararg()
&& lhs.is_varret() == rhs.is_varret();
}
inline bool operator!=(const FunctionSchema& lhs, const FunctionSchema& rhs) {
return !(lhs == rhs);
}
// for debugging, make sure we can describe the call site
inline std::ostream& operator<<(std::ostream& out, const Argument& arg) {
return out << arg.type()->str() << " " << arg.name() << (arg.default_value() ? "=<default>" : "");
}
inline std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema);
inline std::string toString(const FunctionSchema& schema) {
std::ostringstream str;
str << schema;
return str.str();
}
} // namespace c10
#include <ATen/core/function_schema_inl.h>