forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpickler.h
280 lines (236 loc) · 7.07 KB
/
pickler.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#pragma once
#include <string>
#include <vector>
#include <ATen/core/ivalue.h>
#include <c10/util/ArrayRef.h>
#include <torch/csrc/utils/disallow_copy.h>
namespace torch {
namespace jit {
// See Python's pickletools.py for a detailed description of each of these codes
enum class OpCode : char {
MARK = '(',
STOP = '.',
POP = '0',
POP_MARK = '1',
DUP = '2',
FLOAT = 'F',
INT = 'I',
BININT = 'J',
BININT1 = 'K',
LONG = 'L',
BININT2 = 'M',
NONE = 'N',
PERSID = 'P',
BINPERSID = 'Q',
REDUCE = 'R',
STRING = 'S',
BINSTRING = 'T',
SHORT_BINSTRING = 'U',
UNICODE = 'V',
BINUNICODE = 'X',
APPEND = 'a',
BUILD = 'b',
GLOBAL = 'c',
DICT = 'd',
EMPTY_DICT = '}',
APPENDS = 'e',
GET = 'g',
BINGET = 'h',
INST = 'i',
LONG_BINGET = 'j',
LIST = 'l',
EMPTY_LIST = ']',
OBJ = 'o',
PUT = 'p',
BINPUT = 'q',
LONG_BINPUT = 'r',
SETITEM = 's',
TUPLE = 't',
EMPTY_TUPLE = ')',
SETITEMS = 'u',
BINFLOAT = 'G',
// Protocol 2
PROTO = '\x80',
NEWOBJ = '\x81',
EXT1 = '\x82',
EXT2 = '\x83',
EXT4 = '\x84',
TUPLE1 = '\x85',
TUPLE2 = '\x86',
TUPLE3 = '\x87',
NEWTRUE = '\x88',
NEWFALSE = '\x89',
LONG1 = '\x8a',
LONG4 = '\x8b',
// Protocol 3 (Python 3.x)
BINBYTES = 'B',
SHORT_BINBYTES = 'C',
// Protocol 4
SHORT_BINUNICODE = '\x8c',
BINUNICODE8 = '\x8d',
BINBYTES8 = '\x8e',
EMPTY_SET = '\x8f',
ADDITEMS = '\x90',
FROZENSET = '\x91',
NEWOBJ_EX = '\x92',
STACK_GLOBAL = '\x93',
MEMOIZE = '\x94',
FRAME = '\x95'
};
enum PicklerClass : uint8_t {
// A reference to the tensor table
TENSOR = 0,
// List[int]
INTLIST = 1,
// List[Tensor]
TENSORLIST = 2,
// List[float]
DOUBLELIST = 3,
// List[bool]
BOOLLIST = 4
};
using ::c10::IValue;
class Pickler {
TH_DISALLOW_COPY_AND_ASSIGN(Pickler);
public:
Pickler(std::vector<at::Tensor>* tensor_table = nullptr)
: tensor_table_(tensor_table) {}
const std::vector<char>& stack();
// Push protocol onto the stack
void start();
// Push STOP OpCode onto the stack
void finish();
void addIValue(const IValue& ivalue);
// See torch/serialization.py for details, pushes a magic number, torch
// serialization version, and system info to the pickle archive all as
// individual pickle programs
void pushMetadata();
void startTuple();
void endTuple();
private:
void pushDict(const IValue& ivalue);
void pushDouble(const IValue& ivalue);
void pushGenericList(const IValue& ivalue);
void pushInt(const IValue& ivalue);
void pushIntList(const IValue& ivalue);
void pushList(const IValue& ivalue);
void pushLiteralTensor(const IValue& ivalue);
void pushMemoization(const IValue& ivalue);
void pushMemoizedString(const IValue& ivalue);
void pushTensor(const IValue& ivalue);
void pushTensorReference(const IValue& ivalue);
void pushTuple(const IValue& ivalue);
void pushBinGet(uint32_t memo_id);
void pushClass(PicklerClass cls);
void pushSpecializedList(
const IValue& ivalue,
PicklerClass cls,
const std::function<void(const IValue&)>& item_pusher);
void pushGlobal(const std::string& name);
void pushMemoization(const void* item);
void pushString(const std::string& string);
void pushTensorData(const at::Tensor& tensor);
// Add a BINPUT op and return the memoization id used
size_t pushNextBinPut();
const void* getPointer(const IValue& ivalue);
// These convert values to bytes and add them to the stack (NB: since T is to
// the left of a '::', its type cannot be deduced by the compiler so one must
// explicitly instantiate the template, i.e. push<int>(int) works, push(int)
// does not)
template <typename T>
void push(typename std::common_type<T>::type value) {
const char* begin = reinterpret_cast<const char*>(&value);
stack_.insert(stack_.end(), begin, begin + sizeof(T));
}
// Stack of opcodes/data
std::vector<char> stack_;
// Memoization of IValues that have been written (index in table is used for
// BINPUT opcodes) to enable shared references
std::unordered_map<const void*, uint32_t> memo_map_;
// External table of tensors to serialize. If this is missing, then tensors
// are serialized directly into the pickle
std::vector<at::Tensor>* tensor_table_;
// List of tensors to serialize in the same binary as the pickle data
std::vector<at::Tensor> literal_tensors_;
// TODO: only use this if necessary (add a pass to find all shared ivalues,
// and only memoize those)
uint32_t memo_id_ = 0;
// When arbitrary (maybe temporary) values are saved, keep them here so they
// can be memoized correctly
std::vector<c10::IValue> memoized_ivalues_;
std::unordered_map<std::string, uint32_t> memoized_strings_map_;
};
// An item in the unpickler stack. There needs to be a way to differentiate
// between a GLOBAL item (PicklerClass) and a normal value item (IValue)
struct StackItem {
StackItem(IValue ivalue)
: pickler_class_(c10::nullopt), ivalue_(std::move(ivalue)) {}
StackItem(PicklerClass pickler_class)
: pickler_class_(pickler_class), ivalue_(c10::nullopt) {}
IValue ivalue() const {
return *ivalue_;
}
PicklerClass pickler_class() const {
return *pickler_class_;
}
c10::optional<IValue> ivalue_opt() const {
return ivalue_;
}
c10::optional<PicklerClass> pickler_class_opt() const {
return pickler_class_;
}
private:
c10::optional<PicklerClass> pickler_class_;
c10::optional<IValue> ivalue_;
};
// [unpickler refactor] there is some cruft around OpCode::BUILD,
// OpCode::NEWOBJ, and the last_opcode_ member below that should be deleted at
// some point, the Pickler doesn't produce it and it's only around to support
// models saved before 1.1
class Unpickler {
TH_DISALLOW_COPY_AND_ASSIGN(Unpickler);
public:
Unpickler(
void* data,
size_t size,
const std::vector<at::Tensor>* tensor_table)
: bytes_(static_cast<const uint8_t*>(data)),
end_ptr_(bytes_ + size),
tensor_table_(tensor_table),
last_opcode_(OpCode::STOP) {}
std::vector<IValue> parse_ivalue_list();
private:
// No arguments ensures that a template arugment must be specified
// so that the number of bytes read / type read is explicit
template <typename T>
T read() {
TORCH_CHECK(
bytes_ + sizeof(T) <= end_ptr_,
"Unpickler overran buffer while reading a value");
T item;
std::memcpy(&item, bytes_, sizeof(T));
bytes_ += sizeof(T);
return item;
}
double readFloat();
OpCode readInstruction();
OpCode readOpCode();
std::string readString();
void readList();
void run();
std::vector<StackItem> stack_;
std::vector<StackItem> memo_table_;
std::vector<size_t> marks_;
const uint8_t* bytes_;
const uint8_t* end_ptr_;
const std::vector<at::Tensor>* tensor_table_;
// [unpickler refactor]
OpCode last_opcode_;
};
// returns a (tensor, record_size) for a tensor, converting it to a CPU tensor
// if necessary
std::pair<at::Tensor, uint64_t> getWriteableTensor(const at::Tensor& tensor);
// return the value of the tensor's storage pointer
uint64_t getStorageKey(const at::Tensor& tensor);
} // namespace jit
} // namespace torch