forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsugared_value.h
541 lines (467 loc) · 17 KB
/
sugared_value.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
#pragma once
#include <functional>
#include <memory>
#include <string>
#include <torch/csrc/jit/ir.h>
#include <torch/csrc/jit/script/error_report.h>
#include <torch/csrc/jit/script/module.h>
#include <torch/csrc/jit/script/schema_matching.h>
namespace torch {
namespace jit {
namespace script {
// The AST can contain nodes like `self`, `self.b` or `python_fn` that
// are not first-class values in the graph representation, but instead
// will be desugared based on how they are used in the AST.
// SugaredValue is used to temporarily represent these values in a way
// that separates their behavior from the AST -> IR converter itself.
// This allows us to keep dependencies on python minimal.
enum NoneStatus { ALWAYS, MAYBE, NEVER };
struct TORCH_API SugaredValue
: public std::enable_shared_from_this<SugaredValue> {
// what is this node? for error reporting (e.g. Module, python function)
virtual std::string kind() const = 0;
// what can we do with this thing?
// use it as a value e.g. `this + 4`
virtual Value* asValue(const SourceRange& loc, Function& m) {
throw ErrorReport(loc) << kind() << " cannot be used as a value";
}
// select an attribute on it, e.g. `this.field`
virtual std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) {
throw ErrorReport(loc) << "attribute lookup is not defined on " << kind();
}
// assign an attribute on it, e.g. `this.field = newValue`
virtual void setAttr(
const SourceRange& loc,
Function& m,
const std::string& field,
Value* newValue) {
throw ErrorReport(loc) << "attribute assignment is not defined on "
<< kind();
}
virtual NoneStatus isNone() {
return NEVER;
}
// use it as a vector of values, e.g. a tuple of values as return value from
// a method invocation
virtual std::vector<std::shared_ptr<SugaredValue>> asTuple(
const SourceRange& loc,
Function& m,
const c10::optional<size_t>& size_hint = {}) {
throw ErrorReport(loc) << kind() << " cannot be used as a tuple";
}
virtual std::vector<std::shared_ptr<SugaredValue>> asType(
const SourceRange& loc,
Method& m) {
throw ErrorReport(loc) << kind() << " cannot be used as a type";
}
// call it like a function, e.g. `outputs = this(inputs)`
virtual std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& m,
// note: names for args will be 'argument 0', 'argument 1', etc..
at::ArrayRef<NamedValue> inputs_,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) {
// n_binders is always set to the number of variables an expression is
// syntactically bound to:
// a = foo() # 1 binder (note in this case the single binder might be a
// tuple) a, * b = foo() # 1 binder a, b = foo() # 2 binders foo() # 0
// binders
//
// In subexpressions, like bar() in foo(bar()), n_binders is always set to
// 1. n_binders is used as a hint to subexpressions to determine how many
// values they should return when that number is ambiguous statically. In
// particular it is currently used to decide how many tensors a call to a
// python function will return. It is only a hint, functions do not have to
// check that n_binders match the number of things they are returning, the
// assignment logic will do that anyway.
throw ErrorReport(loc) << "cannot call a " << kind();
}
// return length of this thing, if not then it can't be iterated.
virtual Value* len(const SourceRange& loc, Function& m) {
throw ErrorReport(loc) << "'" << kind() << "'"
<< " object is not iterable";
}
// expression for ith elemement for iterable value
virtual Value* getelem(const SourceRange&loc, Function& m, Value* i) {
throw ErrorReport(loc) << " cannot get the element of value " << kind();
}
virtual ~SugaredValue() = default;
};
// most things in the environment are just simple value types
// and not special python syntax sugar types
struct TORCH_API SimpleValue : public SugaredValue {
SimpleValue(Value* value) : value_(value) {}
std::string kind() const override {
return "value";
}
Value* asValue(const SourceRange& range, Function& m) override {
return value_;
}
NoneStatus isNone() override {
if (value_->mustBeNone())
return ALWAYS;
else if (value_->type()->cast<OptionalType>())
return MAYBE;
else
return NEVER;
}
std::vector<std::shared_ptr<SugaredValue>> asTuple(
const SourceRange& loc,
Function& m,
const c10::optional<size_t>& size_hint = {}) override;
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) override;
void setAttr(
const SourceRange& loc,
Function& m,
const std::string& field,
Value* newValue) override;
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& m,
// note: names for args will be 'argument 0', 'argument 1', etc..
at::ArrayRef<NamedValue> inputs_,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override;
Value* getValue() const {
return value_;
}
Value* len(const SourceRange& loc, Function& m) override;
Value* getelem(const SourceRange&loc, Function& m, Value* i) override;
private:
Value* value_;
};
struct TORCH_API BuiltinFunction : public SugaredValue {
BuiltinFunction(Symbol symbol, c10::optional<NamedValue> self)
: symbol(symbol), self(std::move(self)) {}
// The symbol of the function (e.g. `aten::relu`).
Symbol symbol;
// if this is method, then this is the self argument.
c10::optional<NamedValue> self;
std::string kind() const override {
return "builtin";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& m,
at::ArrayRef<NamedValue> attributes,
at::ArrayRef<NamedValue> inputs,
size_t n_binders) override;
};
struct TORCH_API BuiltinModule : public SugaredValue {
BuiltinModule(std::string name, c10::optional<int64_t> version = at::nullopt)
: name(std::move(name)), version(std::move(version)) {}
std::string kind() const override {
return "builtin module";
}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) override {
return std::make_shared<BuiltinFunction>(
Symbol::fromQualString(name + "::" + field), c10::nullopt);
}
private:
std::string name;
// when we add operator versioning, emit this op as it exising at 'version'
// if not set, use the latest version
c10::optional<int64_t> version;
};
// Represents a class, analagous to `int` or `dict`. Instances of classes,
// like `1` or `{"foo": 5}`, are represented as SimpleValues
struct TORCH_API ClassValue : public SugaredValue {
explicit ClassValue(ClassTypePtr type) : type_(std::move(type)) {}
// Call the type's constructor, as in:
// n = Foo(constructor_arg)
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override;
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& field) override;
std::string kind() const override {
return type_->str();
}
ClassTypePtr type_;
};
struct TORCH_API NamedTupleConstructor : public SugaredValue {
explicit NamedTupleConstructor(TupleTypePtr type) : type_(std::move(type)) {}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override;
std::string kind() const override {
return type_->str();
}
TupleTypePtr type_;
};
struct FunctionValue : public SugaredValue {
FunctionValue(std::shared_ptr<Function> callee)
: callee_(std::move(callee)) {}
std::string kind() const override {
return "function";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& f,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
callee_->ensure_defined();
MatchedSchema match =
matchSchema(callee_->getSchema(), loc, *f.graph(), inputs, attributes);
Value* output = f.graph()->insertFunctionCall(callee_, match);
output->node()->setSourceRange(loc);
return std::make_shared<SimpleValue>(output);
}
private:
std::shared_ptr<Function> callee_;
};
struct TORCH_API ClosureValue : public SugaredValue {
ClosureValue(Value* value) : value_(value) {
TORCH_INTERNAL_ASSERT(value_->node()->kind() == prim::Function);
}
std::string kind() const override {
return "closure";
}
Value* asValue(const SourceRange& range, Function& m) override {
return value_;
}
Value* value_;
};
// defines how a method obtained from a module behaves in script
struct MethodValue : public SugaredValue {
MethodValue(Value* self, std::string method_name)
: self_(std::move(self)), method_name_(std::move(method_name)) {}
std::string kind() const override {
return "method";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& f,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
std::vector<NamedValue> inputsWithSelf = {self_};
inputsWithSelf.insert(inputsWithSelf.end(), inputs.begin(), inputs.end());
auto method = self_->type()->expect<ClassType>()->getMethod(method_name_);
TORCH_INTERNAL_ASSERT(method);
method->ensure_defined();
MatchedSchema match = matchSchema(
method->getSchema(), loc, *f.graph(), inputsWithSelf, attributes);
Value* output = f.graph()->insertMethodCall(method_name_, match);
output->node()->setSourceRange(loc);
return std::make_shared<SimpleValue>(output);
}
private:
Value* self_;
std::string method_name_;
};
struct TORCH_API PrintValue : public SugaredValue {
std::string kind() const override {
return "print";
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override;
};
// expressions like int(x)
// these are the same as call prim::Int or equivalent except it
// is a noop when the input is a subtype of 'type'
struct TORCH_API CastValue : public BuiltinFunction {
CastValue(TypePtr type, c10::Symbol method)
: BuiltinFunction(method, c10::nullopt), type_(std::move(type)) {}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
if (inputs.size() == 1 && attributes.size() == 0) {
auto v = inputs[0].value(*m.graph());
if (v->type()->isSubtypeOf(type_)) {
return std::make_shared<SimpleValue>(v);
}
}
return BuiltinFunction::call(loc, m, inputs, attributes, n_binders);
}
private:
TypePtr type_;
};
using SugaredValuePtr = std::shared_ptr<SugaredValue>;
// builtins operators and functions that call a method if it exists
// on a class type, like 'len(x)' and 'x + y'
struct TORCH_API MagicMethod : public SugaredValue {
MagicMethod(
std::string desugared_name,
SugaredValuePtr base)
: base_value_(std::move(base)),
desugared_name_(std::move(desugared_name)) {}
std::string kind() const override {
return desugared_name_;
}
std::shared_ptr<SugaredValue> call(
const SourceRange& loc,
Function& m,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) override {
if (inputs.size() > 0) {
Value* self = inputs[0].value(*m.graph());
if (auto class_ptr = self->type()->cast<ClassType>()) {
if (!class_ptr->getMethod(desugared_name_)) {
throw ErrorReport(loc)
<< class_ptr->python_str() << " does not define a "
<< desugared_name_ << " method";
}
return MethodValue(self, desugared_name_)
.call(loc, m, inputs.slice(1), attributes, n_binders);
}
}
return base_value_->call(loc, m, inputs, attributes, n_binders);
}
private:
SugaredValuePtr base_value_;
std::string desugared_name_;
};
// These SugaredValues have special handling in the compiler because they
// change the normal evalution order of the expression they participate in.
// They are exposed here so that the python frontend can inject them
// when it sees the equivalent thing in python
struct TORCH_API ForkValue : public SugaredValue {
ForkValue() = default;
std::string kind() const override {
return "fork";
}
};
struct TORCH_API AnnotateValue : public SugaredValue {
AnnotateValue() = default;
std::string kind() const override {
return "annotate";
}
};
struct TORCH_API UninitializedValue : public SugaredValue {
UninitializedValue() = default;
std::string kind() const override {
return "uninitialized";
}
};
// matched against for special handling of getattr expressions
struct TORCH_API GetAttrValue : SugaredValue {
GetAttrValue() = default;
std::string kind() const override {
return "getattr";
}
};
// matched against for special handling of isinstance expressions
struct TORCH_API IsInstanceValue : SugaredValue {
IsInstanceValue() = default;
std::string kind() const override {
return "isinstance";
}
};
// matched against for special handling of range expressions
struct TORCH_API RangeValue : SugaredValue {
RangeValue(const SourceRange& loc, Function&m, std::vector<Value*> inputs);
std::string kind() const override {
return "range";
}
Value* len(const SourceRange& loc, Function& m) override;
Value* getelem(const SourceRange&loc, Function& m, Value* i) override;
private:
Value* start_;
Value* end_;
Value* step_;
// a flag to determine if it's a simple range() call with only end_ from
// arguments If true, we will not insert length calculation and index
// derivation nodes to simplify the graph and enable more possible
// optimizations
bool has_only_end_;
};
// matched against for special handling of iterables like zip(), enumerate()
struct TORCH_API IterableValue : SugaredValue {
IterableValue(Symbol symbol): symbol_(symbol) {}
std::string kind() const override {
return "iterable";
}
Symbol symbol_;
};
// Specialized Tree structure to matched against for special handling
// of builtin functions iterables expressions like zip(), enumerate(), etc.
// zip and enumerate can be modeled as a tree of SimpleValue/RangeValue:
// zip(x, y) -> (x, y) with tuple assignment to each loop target
// enumerate(x) -> (range(0, math.inf, 1), x)
// So a complicated expression like zip(a, enumerate(b), range(0, 100)) will be:
// (a, (range(0, math.inf, 1), b), range(0, 100))
// We use those base iterables to fill in the loop information like max_trip_count
// and set the value table for loop targets
struct TORCH_API IterableTree : SugaredValue {
IterableTree() = default;
IterableTree(const std::vector<SugaredValuePtr> children): children_(std::move(children)) {}
std::string kind() const override {
return "iterabletree";
}
void addChild(SugaredValuePtr sv) {
children_.emplace_back(sv);
}
std::vector<SugaredValuePtr> get_children() {
return children_;
}
// given a IterableTree node, get all the base iterables/leaves under the
// IterableTree node, which are either SimpleValue or RangeValue. This enable
// us to get all the basic SugaredValues that contains valid loop information
// with len() and getelem()
std::vector<SugaredValuePtr> get_base_iterables();
Value* len(const SourceRange& loc, Function& m) override;
Value* getelem(const SourceRange&loc, Function& m, Value* i) override;
private:
std::vector<SugaredValuePtr> children_;
};
// This represents the "__new__" method on classes, which can't be a MethodValue
// because it takes a ClassValue as input.
// So if we see:
// Foo.__new__(Foo)
// Foo is a ClassValue, calling `attr("__new__")` will return a ClassNewMethod.
struct TORCH_API ClassNewMethod : public SugaredValue {
ClassNewMethod(ClassTypePtr type) : type_(type) {}
std::string kind() const override {
return "class.__new__";
}
std::shared_ptr<SugaredValue> createObject(
const SourceRange& loc,
Function& m) {
auto& g = *m.graph();
auto createNode = g.insertNode(g.createObject(type_));
return std::make_shared<SimpleValue>(createNode->output());
}
ClassTypePtr type_;
};
static inline std::vector<Value*> toValues(
Graph& g,
at::ArrayRef<NamedValue> nvs) {
return fmap(nvs, [&](const NamedValue& v) { return v.value(g); });
}
static inline Self simpleSelf(const TypePtr& typ) {
return [typ](Value* v) {
v->setType(typ);
return std::make_shared<SimpleValue>(v);
};
}
} // namespace script
} // namespace jit
} // namespace torch