-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLab06_Q3_PeriodicBoundary.py
246 lines (220 loc) · 10.7 KB
/
Lab06_Q3_PeriodicBoundary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import numpy as np
def Potential(r):
return 4*(r**(-12) - r**(-6))
def Kinetic(vx, vy):
return 0.5*(vx**2 + vy**2)
# acceleration
def fx_ij(xi, xj, yi, yj):
'''
Function f_ij: Gives the x comp of acceleration experienced by particle i due to
Lennard-Jones potential wrt particle j.
'''
r = np.sqrt((xj- xi)**2 + (yj - yi)**2) # separation distance
return 24 * (xj - xi) * r**(-8) * (1 - 2 * r**(-6))
def fy_ij(xi, xj, yi, yj):
'''
Function f_ij: Gives the y comp of acceleration experienced by particle i due to
Lennard-Jones potential wrt particle j.
'''
r = np.sqrt((xj- xi)**2 + (yj - yi)**2) # separation distance
return 24 * (yj - yi) * r**(-8) * (1 - 2 * r**(-6))
def R(xi, xj, yi, yj):
return np.sqrt((xj- xi)**2 + (yj - yi)**2)
def doVerlet(num_particles, periodic = False):
'''
Function: doVerlet: This function performs the Verlet algorithim
in order to calculate the position of two particles.
Input: num_particles an int indicating number of particles to model. periodic is
a boolean flag to indicate implementation of periodic boundary conditions
'''
N = 1000 #number of iterations
h = 0.01 #time step
# Initial Conditions
Lx = 4.0 # X component of momentum
Ly = 4.0 # Y component of momentum
dx = Lx/np.sqrt(num_particles)
dy = Ly/np.sqrt(num_particles)
x_grid = np.arange(dx/2, Lx, dx)
y_grid = np.arange(dy/2, Ly, dy)
xx_grid, yy_grid = np.meshgrid(x_grid, y_grid)
x_initial = xx_grid.flatten()
y_initial = yy_grid.flatten()
#initial rest condition
v_i = 0.0
#preallocate memory for position velocity, v_prep (ie v(t+h/2))
r = np.zeros([num_particles, N, 2])
v = np.zeros([num_particles, N, 2])
v_prep = np.zeros([num_particles,2])
#set IC
r[:,0,0] = x_initial
r[:,0,1] = y_initial
v[:,0,:] = v_i
#eq 7
#variables with _prep suffix get updated at each iteration and represent
#v(t+h/2) in Verlet algorithm (eq 8 - 11) in lab manual
#arrays for storing acceleration due to interaction from each particle
fx = np.zeros(num_particles)
fy = np.zeros(num_particles)
if periodic: #use these to store replicated positions
r1 = np.zeros([num_particles,2])
r2 = np.zeros([num_particles,2])
r3 = np.zeros([num_particles,2])
r4 = np.zeros([num_particles,2])
r5 = np.zeros([num_particles,2])
r6 = np.zeros([num_particles,2])
r7 = np.zeros([num_particles,2])
r8 = np.zeros([num_particles,2])
Energy = np.zeros(N) #array to store total energy at each time step
Pot = np.zeros(N) #array to store potential energy at each time step
Kin = np.zeros(N) #array to store kinetic energy at each time step
#let's get the first v_prep's using equation 7
for i in range(num_particles):
for j in range(num_particles):
if j != i:
#need to sum up the interactions on each particle from all the others
fx[i] += fx_ij(r[i,0,0], r[j,0,0], r[i,0,1], r[j,0,1])
fy[i] += fy_ij(r[i,0,0], r[j,0,0], r[i,0,1], r[j,0,1])
Pot[0] += Potential(R(r[i,0,0], r[j,0,0], r[i,0,1], r[j,0,1])) #sum up the potential energies
if periodic: #need to add the interactions from the extra replicated particles
#replicate positions and shift
r1[:,0] = r[:,0,0] - Lx
r1[:,1] = r[:,0,1] + Ly
r2[:,0] = r[:,0,0]
r2[:,1] = r[:,0,1] + Ly
r3[:,0] = r[:,0,0] + Lx
r3[:,1] = r[:,0,1] + Ly
r4[:,0] = r[:,0,0] - Lx
r4[:,1] = r[:,0,1]
r5[:,0] = r[:,0,0] + Lx
r5[:,1] = r[:,0,1]
r6[:,0] = r[:,0,0] - Lx
r6[:,1] = r[:,0,1] - Ly
r7[:,0] = r[:,0,0]
r7[:,1] = r[:,0,1] - Ly
r8[:,0] = r[:,0,0] + Lx
r8[:,1] = r[:,0,1] - Ly
#add on the interactions from the shifted replicated particles
fx[i] += fx_ij(r[i,0,0], r1[j,0], r[i,0,1], r1[j,1])
fy[i] += fy_ij(r[i,0,0], r1[j,0], r[i,0,1], r1[j,1])
fx[i] += fx_ij(r[i,0,0], r2[j,0], r[i,0,1], r2[j,1])
fy[i] += fy_ij(r[i,0,0], r2[j,0], r[i,0,1], r2[j,1])
fx[i] += fx_ij(r[i,0,0], r3[j,0], r[i,0,1], r3[j,1])
fy[i] += fy_ij(r[i,0,0], r3[j,0], r[i,0,1], r3[j,1])
fx[i] += fx_ij(r[i,0,0], r4[j,0], r[i,0,1], r4[j,1])
fy[i] += fy_ij(r[i,0,0], r4[j,0], r[i,0,1], r4[j,1])
fx[i] += fx_ij(r[i,0,0], r5[j,0], r[i,0,1], r5[j,1])
fy[i] += fy_ij(r[i,0,0], r5[j,0], r[i,0,1], r5[j,1])
fx[i] += fx_ij(r[i,0,0], r6[j,0], r[i,0,1], r6[j,1])
fy[i] += fy_ij(r[i,0,0], r6[j,0], r[i,0,1], r6[j,1])
fx[i] += fx_ij(r[i,0,0], r7[j,0], r[i,0,1], r7[j,1])
fy[i] += fy_ij(r[i,0,0], r7[j,0], r[i,0,1], r7[j,1])
fx[i] += fx_ij(r[i,0,0], r8[j,0], r[i,0,1], r8[j,1])
fy[i] += fy_ij(r[i,0,0], r8[j,0], r[i,0,1], r8[j,1])
#kinetic energy
Kin[0] += Kinetic(v[i, 0, 0], v[i, 0, 1]) #sum up the kinetic energies
#these become the components of v(t+h/2) for the first iteration
v_prep[i, 0] = v[i, 0, 0] + 0.5 * h * fx[i]
v_prep[i, 1] = v[i, 0, 1] + 0.5 * h * fy[i]
#total energy for t = 0
#sum up potential and kinetic for total energy
Energy[0] = Kin[0] + Pot[0]/2 #divide by 2 to account for double counting
#now that we've 'prepped' the system we can begin iterating
#print(Kin[0], Pot[0], 'potential energy')
for i in range(1,N):
for j in range(num_particles): #need to update each particle at each time step
#eq 8
r[j, i, 0] = r[j, i-1, 0] + h * v_prep[j, 0] #x
r[j, i, 1] = r[j, i-1, 1] + h * v_prep[j, 1] #y
if periodic: #take the positions modulus length of box
r[j, i, 0] = np.mod(r[j, i, 0], Lx)
r[j, i, 1] = np.mod(r[j, i, 1], Ly)
for j in range(num_particles):
#need to sum up the interactions on each particle from all the others
fx = np.zeros(num_particles)
fy = np.zeros(num_particles)
if periodic: #use these to store replicated positions
r1 = np.zeros([num_particles,2])
r2 = np.zeros([num_particles,2])
r3 = np.zeros([num_particles,2])
r4 = np.zeros([num_particles,2])
r5 = np.zeros([num_particles,2])
r6 = np.zeros([num_particles,2])
r7 = np.zeros([num_particles,2])
r8 = np.zeros([num_particles,2])
for k in range(num_particles):
if k != j:
fx[j] += fx_ij(r[j,i,0], r[k,i,0], r[j,i,1], r[k,i,1])
fy[j] += fy_ij(r[j,i,0], r[k,i,0], r[j,i,1], r[k,i,1])
Pot[i] += Potential(R(r[j,i,0], r[k,i,0], r[j,i,1], r[k,i,1])) #sum up potential energies
if periodic: #need to add the interactions from the extra replicated particles
#replicate positions and shit
r1[:,0] = r[:,i,0] - Lx
r1[:,1] = r[:,i,1] + Ly
r2[:,0] = r[:,i,0]
r2[:,1] = r[:,i,1] + Ly
r3[:,0] = r[:,i,0] + Lx
r3[:,1] = r[:,i,1] + Ly
r4[:,0] = r[:,i,0] - Lx
r4[:,1] = r[:,i,1]
r5[:,0] = r[:,i,0] + Lx
r5[:,1] = r[:,i,1]
r6[:,0] = r[:,i,0] - Lx
r6[:,1] = r[:,i,1] - Ly
r7[:,0] = r[:,i,0]
r7[:,1] = r[:,i,1] - Ly
r8[:,0] = r[:,i,0] + Lx
r8[:,1] = r[:,i,1] - Ly
#add on interactions from replicated shifted particles
fx[j] += fx_ij(r[j,i,0], r1[j,0], r[j,i,1], r1[j,1])
fy[j] += fy_ij(r[j,i,0], r1[j,0], r[j,i,1], r1[j,1])
fx[j] += fx_ij(r[j,i,0], r2[j,0], r[j,i,1], r2[j,1])
fy[j] += fy_ij(r[j,i,0], r2[j,0], r[j,i,1], r2[j,1])
fx[j] += fx_ij(r[j,i,0], r3[j,0], r[j,i,1], r3[j,1])
fy[j] += fy_ij(r[j,i,0], r3[j,0], r[j,i,1], r3[j,1])
fx[j] += fx_ij(r[j,i,0], r4[j,0], r[j,i,1], r4[j,1])
fy[j] += fy_ij(r[j,i,0], r4[j,0], r[j,i,1], r4[j,1])
fx[j] += fx_ij(r[j,i,0], r5[j,0], r[j,i,1], r5[j,1])
fy[j] += fy_ij(r[j,i,0], r5[j,0], r[j,i,1], r5[j,1])
fx[j] += fx_ij(r[j,i,0], r6[j,0], r[j,i,1], r6[j,1])
fy[j] += fy_ij(r[j,i,0], r6[j,0], r[j,i,1], r6[j,1])
fx[j] += fx_ij(r[j,i,0], r7[j,0], r[j,i,1], r7[j,1])
fy[j] += fy_ij(r[j,i,0], r7[j,0], r[j,i,1], r7[j,1])
fx[j] += fx_ij(r[j,i,0], r8[j,0], r[j,i,1], r8[j,1])
fy[j] += fy_ij(r[j,i,0], r8[j,0], r[j,i,1], r8[j,1])
#eq 9 and 10 combined
v[j, i, 0] = v_prep[j, 0] + 0.5 * h * fx[j]
v[j, i, 1] = v_prep[j, 1] + 0.5 * h * fy[j]
#print(v[j,i,1], i, j)
#eq 9 and 11 combined (getting v_prep's for next iteration)
v_prep[j, 0] += h * fx[j]
v_prep[j, 1] += h * fy[j]
for j in range(num_particles):
Kin[i] += Kinetic(v[j, i, 0], v[j, i, 1]) #sum up kinetic energies
#sum up kinetic and potential energy for total energy
Energy[i] = Kin[i] + Pot[i]/2 #divide by 2 to account for double counting
t = np.linspace(0,h*(N-1),N)
return v, r, t, Energy, Kin, Pot
#compute trajectories for periodic boundary conditions
num_particles = 16
v, r, t, Energy, Kin, Pot = doVerlet(num_particles, periodic = True)
import matplotlib.pyplot as plt
#plot trajectories
plt.figure(figsize = (14,14))
plt.title('Trajectory of Particles', fontsize = 14)
plt.xlabel('$x(t)$', fontsize = 14)
plt.ylabel('$y(t)$', fontsize = 14)
for i in range(num_particles):
lb = 'Particle '+str(i)
plt.plot(rp[i,:,0], rp[i,:,1], '.', label = lb)
plt.legend()
plt.axis('equal')
plt.show()
#plot energy
plt.figure(figsize = (10,10))
plt.plot(t, Energy, '.', label = 'Total Energy')
plt.plot(t, Kin, '.', label = 'Kinetic')
plt.plot(t, Pot/2, '.', label = 'Potential Energy')
plt.title('Energy vs Time', fontsize = 14)
plt.xlabel('time (s)', fontsize = 14)
plt.ylabel('Energy (J)', fontsize = 14)
plt.legend()