diff --git a/examples/kw_extraction.ipynb b/examples/kw_extraction.ipynb new file mode 100644 index 0000000..469a46c --- /dev/null +++ b/examples/kw_extraction.ipynb @@ -0,0 +1,1004 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + }, + "toc": true + }, + "source": [ + "

Table of Contents

\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**kw_extraction**\n", + "\n", + "This notebook describes the use of [kwx](https://github.com/andrewtavis/kwx) by deriving the top keywords for tweets from the [Twitter US Airline Sentiment](https://www.kaggle.com/crowdflower/twitter-airline-sentiment) dataset. \n", + "\n", + "Follow the provided link and download the data, rename it `airline_tweets.csv` to be more descriptive, then put it in a `data` directory in the cwd." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:59:43.264123Z", + "start_time": "2021-01-31T08:59:43.256192Z" + }, + "slideshow": { + "slide_type": "skip" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import os\n", + "import sys\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "from kwx.utils import load_data, prepare_data\n", + "from kwx.utils import organize_by_pos, translate_output\n", + "from kwx.model import extract_kws, gen_files\n", + "from kwx.visuals import graph_topic_num_evals, pyLDAvis_topics\n", + "from kwx.visuals import gen_word_cloud, t_sne\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "# Plot settings\n", + "sns.set(style=\"darkgrid\")\n", + "sns.set(rc={'figure.figsize':(15,5)})\n", + "\n", + "pd.set_option(\"display.max_rows\", 16) # maximum df rows\n", + "pd.set_option('display.max_columns', None) # maximum df columns\n", + "from IPython.core.display import display, HTML\n", + "display(HTML(\"\")) # widens interface\n", + "# %matplotlib notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Load Data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:37:43.136154Z", + "start_time": "2021-01-31T08:37:43.075058Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
text
15@VirginAmerica SFO-PDX schedule is still MIA.
16@VirginAmerica So excited for my first cross c...
17@VirginAmerica I flew from NYC to SFO last we...
18I ❤️ flying @VirginAmerica. ☺️👍
19@VirginAmerica you know what would be amazingl...
\n", + "
" + ], + "text/plain": [ + " text\n", + "15 @VirginAmerica SFO-PDX schedule is still MIA.\n", + "16 @VirginAmerica So excited for my first cross c...\n", + "17 @VirginAmerica I flew from NYC to SFO last we...\n", + "18 I ❤️ flying @VirginAmerica. ☺️👍\n", + "19 @VirginAmerica you know what would be amazingl..." + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_airline_tweets = load_data(data='data/airline_tweets.csv', target_cols='text')\n", + "df_airline_tweets[15:20]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prepare Text Data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:37:45.997763Z", + "start_time": "2021-01-31T08:37:45.995221Z" + } + }, + "outputs": [], + "source": [ + "input_language, output_language = 'english', 'english'" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:39:02.598222Z", + "start_time": "2021-01-31T08:37:46.622361Z" + } + }, + "outputs": [], + "source": [ + "# The [0] gives us the corpus\n", + "# [1] is clean strings for BERT\n", + "# [2] the indexes of selected entries if sample_size != 1\n", + "text_corpus = prepare_data(\n", + " data=df_airline_tweets,\n", + " target_cols='text',\n", + " input_language=input_language, \n", + " min_freq=2,\n", + " min_word_len=4,\n", + " sample_size=1,\n", + ")[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:39:02.603650Z", + "start_time": "2021-01-31T08:39:02.599983Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[['virginamerica', 'schedule'],\n", + " ['virgin_america',\n", + " 'cross_country',\n", + " 'virginamerica',\n", + " 'excited',\n", + " 'cross',\n", + " 'country',\n", + " 'flight',\n", + " 'hear',\n", + " 'virgin',\n", + " 'america'],\n", + " ['virginamerica', 'week', 'seat', 'gentleman'],\n", + " ['virginamerica'],\n", + " ['virginamerica', 'amazingly', 'awesome']]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "text_corpus[15:20]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Show Model Topics" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:39:02.608421Z", + "start_time": "2021-01-31T08:39:02.606477Z" + } + }, + "outputs": [], + "source": [ + "num_keywords = 15\n", + "num_topics = 10" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:40:56.913180Z", + "start_time": "2021-01-31T08:39:02.610456Z" + }, + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [], + "source": [ + "# return_topics=True gives us the topics themselves\n", + "topics = extract_kws(\n", + " method='LDA',\n", + " text_corpus=text_corpus,\n", + " clean_texts=None,\n", + " input_language=input_language,\n", + " output_language=None,\n", + " num_keywords=num_keywords,\n", + " num_topics=num_topics,\n", + " corpuses_to_compare=None,\n", + " return_topics=True,\n", + " ignore_words=None,\n", + " min_freq=2,\n", + " min_word_len=4,\n", + " sample_size=1\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:40:56.918174Z", + "start_time": "2021-01-31T08:40:56.914916Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['flight',\n", + " 'cancel',\n", + " 'hold',\n", + " 'americanair',\n", + " 'southwestair',\n", + " 'hour',\n", + " 'usairway',\n", + " 'flightled',\n", + " 'cancelled_flightle',\n", + " 'wait',\n", + " 'minute',\n", + " 'cancelled_flighted',\n", + " 'time',\n", + " 'phone',\n", + " 'usairways']" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "topics[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Extract Keywords" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:40:56.922185Z", + "start_time": "2021-01-31T08:40:56.919967Z" + }, + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [], + "source": [ + "# The following is a string or list of strings to not include in outputs\n", + "# This variable is updated by the user if prompt_remove_words=True\n", + "ignore_words = None" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:40:58.818627Z", + "start_time": "2021-01-31T08:40:56.923820Z" + }, + "code_folding": [], + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [], + "source": [ + "freq_kws = extract_kws(\n", + " method='frequency',\n", + " text_corpus=text_corpus,\n", + " clean_texts=None,\n", + " input_language=input_language,\n", + " output_language=None,\n", + " num_keywords=num_keywords,\n", + " num_topics=num_topics,\n", + " corpuses_to_compare=None,\n", + " return_topics=False,\n", + " ignore_words=None,\n", + " min_freq=2,\n", + " min_word_len=4,\n", + " sample_size=1,\n", + " prompt_remove_words=False\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:40:58.826772Z", + "start_time": "2021-01-31T08:40:58.821454Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['flight',\n", + " 'united',\n", + " 'americanair',\n", + " 'southwestair',\n", + " 'jetblue',\n", + " 'usairway',\n", + " 'hour',\n", + " 'cancel',\n", + " 'service',\n", + " 'delay',\n", + " 'customer',\n", + " 'time',\n", + " 'usairways',\n", + " 'plane',\n", + " 'hold']" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "freq_kws" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:56:16.501019Z", + "start_time": "2021-01-31T08:40:58.829946Z" + }, + "slideshow": { + "slide_type": "slide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The LDA keywords are:\n", + "\n", + "['united', 'customer', 'jetblue', 'flight', 'book', 'americanair', 'travel', 'change', 'southwestair', 'love', 'usairway', 'hour', 'delay', 'plane', 'gate']\n", + "\n", + "Are there words that should be removed [y/n]? y\n", + "Type or copy word(s) to be removed: united, jetblue, americanair, southwestair, usairway\n", + "\n", + "\n", + "The new LDA keywords are:\n", + "\n", + "['email', 'check', 'flight', 'cancel', 'agent', 'late', 'virginamerica', 'hold', 'phone', 'service', 'customer', 'wait', 'plane', 'delay', 'gate']\n", + "\n", + "Are there words that should be removed [y/n]? y\n", + "Type or copy word(s) to be removed: virginamerica\n", + "\n", + "\n", + "The new LDA keywords are:\n", + "\n", + "['luggage', 'customer', 'delay', 'flight', 'late', 'minute', 'change', 'phone', 'service', 'plane', 'lose', 'love', 'fleek', 'hour', 'hold']\n", + "\n", + "Are there words that should be removed [y/n]? y\n", + "Type or copy word(s) to be removed: fleek\n", + "\n", + "\n", + "The new LDA keywords are:\n", + "\n", + "['love', 'flight', 'usairways', 'hour', 'service', 'cancel', 'lose', 'luggage', 'phone', 'time', 'plane', 'night', 'delay', 'minute', 'wait']\n", + "\n", + "Are there words that should be removed [y/n]? n\n" + ] + } + ], + "source": [ + "lda_kws = extract_kws(\n", + " method='LDA',\n", + " text_corpus=text_corpus,\n", + " clean_texts=None,\n", + " input_language=input_language,\n", + " output_language=None,\n", + " num_keywords=num_keywords,\n", + " num_topics=num_topics,\n", + " corpuses_to_compare=None,\n", + " return_topics=False,\n", + " ignore_words=None,\n", + " min_freq=2,\n", + " min_word_len=4,\n", + " sample_size=1,\n", + " prompt_remove_words=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:56:18.468146Z", + "start_time": "2021-01-31T08:56:18.463272Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['love',\n", + " 'flight',\n", + " 'usairways',\n", + " 'hour',\n", + " 'service',\n", + " 'cancel',\n", + " 'lose',\n", + " 'luggage',\n", + " 'phone',\n", + " 'time',\n", + " 'plane',\n", + " 'night',\n", + " 'delay',\n", + " 'minute',\n", + " 'wait']" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lda_kws" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Translate Output" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# translate_output(\n", + "# outputs=lda_kws, \n", + "# input_language=input_language, \n", + "# output_language='spanish'\n", + "# )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Organize by Part of Speech" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:58:46.173285Z", + "start_time": "2021-01-31T08:58:45.712104Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'Nouns:': [love,\n", + " flight,\n", + " usairways,\n", + " hour,\n", + " service,\n", + " luggage,\n", + " phone,\n", + " time,\n", + " plane,\n", + " night,\n", + " minute,\n", + " delay],\n", + " 'Verbs:': [cancel, lose, wait]}" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "organize_by_pos(outputs=lda_kws, output_language=output_language)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Get TFIDF Keywords" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:58:57.939951Z", + "start_time": "2021-01-31T08:58:57.927841Z" + } + }, + "outputs": [], + "source": [ + "df_united = df_airline_tweets[\n", + " df_airline_tweets['text'].str.contains(\"united\")\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:59:19.317576Z", + "start_time": "2021-01-31T08:58:58.969188Z" + } + }, + "outputs": [], + "source": [ + "# The [0] gives us the corpus\n", + "# [1] is clean strings for BERT\n", + "# [2] the indexes of selected entries if sample_size != 1\n", + "united_corpus = prepare_data(\n", + " data=df_united,\n", + " target_cols='text',\n", + " input_language=input_language, \n", + " min_freq=2,\n", + " min_word_len=4,\n", + " sample_size=1,\n", + ")[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T08:59:49.557969Z", + "start_time": "2021-01-31T08:59:49.553165Z" + } + }, + "outputs": [], + "source": [ + "df_other_airlines = df_airline_tweets.loc[\n", + " np.setdiff1d(df_airline_tweets.index, df_united.index)\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T09:00:55.419996Z", + "start_time": "2021-01-31T08:59:55.210493Z" + } + }, + "outputs": [], + "source": [ + "# The [0] gives us the corpus\n", + "# [1] is clean strings for BERT\n", + "# [2] the indexes of selected entries if sample_size != 1\n", + "other_airlines_corpus = prepare_data(\n", + " data=df_other_airlines,\n", + " target_cols='text',\n", + " input_language=input_language, \n", + " min_freq=2,\n", + " min_word_len=4,\n", + " sample_size=1,\n", + ")[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T09:01:24.129883Z", + "start_time": "2021-01-31T09:00:55.421683Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The FREQUENCY keywords are:\n", + "\n", + "['united', 'flight', 'delay', 'service', 'customer', 'hour', 'time', 'plane', 'cancel', 'wait']\n", + "\n", + "Are there words that should be removed [y/n]? n\n" + ] + } + ], + "source": [ + "# Words that are prevalent in United tweets compared to others\n", + "tfidf_kws = extract_kws(\n", + " method='tfidf',\n", + " text_corpus=united_corpus,\n", + " clean_texts=None,\n", + " input_language=input_language,\n", + " output_language=None,\n", + " num_keywords=10,\n", + " num_topics=10,\n", + " corpuses_to_compare=other_airlines_corpus,\n", + " return_topics=False,\n", + " ignore_words=ignore_words,\n", + " min_freq=2,\n", + " min_word_len=4,\n", + " sample_size=1,\n", + " prompt_remove_words=False,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "ExecuteTime": { + "end_time": "2021-01-31T09:01:24.136342Z", + "start_time": "2021-01-31T09:01:24.132593Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['united',\n", + " 'flight',\n", + " 'delay',\n", + " 'service',\n", + " 'customer',\n", + " 'hour',\n", + " 'time',\n", + " 'plane',\n", + " 'cancel',\n", + " 'wait']" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tfidf_kws" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualization Functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Graph of Topic Number Evaluations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "topic_nums_to_compare = list(range(5, 16))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Commented out to avoid long run times\n", + "# figure = graph_topic_num_evals(\n", + "# method=['lda', 'bert', 'lda_bert'],\n", + "# text_corpus=text_corpus, \n", + "# input_language=input_language,\n", + "# num_keywords=num_keywords,\n", + "# topic_nums_to_compare=topic_nums_to_compare,\n", + "# sample_size=1,\n", + "# metrics=True, # stability and coherence\n", + "# save_file=False, # True for pwd or directory name\n", + "# return_ideal_metrics=False, # don't output ideal model instead of plot\n", + "# verbose=False, # so progress bar isn't broken online\n", + "# )\n", + "# plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## pyLDAvis Topic Visualization" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "ExecuteTime": { + "end_time": "2020-11-09T19:15:17.269799Z", + "start_time": "2020-11-09T19:15:17.267481Z" + } + }, + "outputs": [], + "source": [ + "# Commented out as it changes the output dimensions due to its width\n", + "# pyLDAvis_topics(\n", + "# method='lda',\n", + "# text_corpus=text_corpus, \n", + "# input_language=input_language,\n", + "# num_topics=num_topics,\n", + "# save_file=False, # True for pwd or directory name\n", + "# display_ipython=True, # <- show in Jupyter notebook\n", + "# )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Word Cloud" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ignore_words = [\n", + " \"jetblue\",\n", + " \"united\",\n", + " \"americanair\",\n", + " \"usairway\",\n", + " \"southwestair\",\n", + " \"virginamerica\",\n", + " \"fleek\",\n", + " \"usairways\",\n", + " \"flightled\",\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "gen_word_cloud(\n", + " text_corpus=text_corpus,\n", + " input_language=input_language,\n", + " ignore_words=ignore_words,\n", + " height=500,\n", + " save_file=False, # True for pwd or directory name\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## t-SNE" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "t_sne(\n", + " dimension=\"both\", \n", + " text_corpus=text_corpus, \n", + " num_topics=num_topics, \n", + " remove_3d_outliers=True,\n", + " fig_size=(20, 10),\n", + " save_file=False, # True for pwd or directory name\n", + ")\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# gen_files" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[kwx.model.gen_files](https://github.com/andrewtavis/kwx/blob/main/kwx/model.py) does the following:\n", + "\n", + "- Computes the optimal number of topics for the given model type(s)\n", + "\n", + "- Extracts the most frequent keywords and those for the optimal topic model\n", + "\n", + "- Allows the user to refine keywords given their intuitions\n", + "\n", + "- Plots the desired visuals\n", + "\n", + "- Puts all of the above in a directory or zipped file" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Commented out to avoid long run times\n", + "# gen_files(\n", + "# method=['lda', 'bert', 'lda_bert'],\n", + "# text_corpus=text_corpus, \n", + "# input_language=input_language,\n", + "# output_language=None,\n", + "# num_keywords=num_keywords,\n", + "# topic_nums_to_compare=topic_nums_to_compare,\n", + "# ignore_words=ignore_words,\n", + "# min_freq=2,\n", + "# min_word_len=4,\n", + "# sample_size=1,\n", + "# prompt_remove_words=True,\n", + "# verbose=False, # so progress bar isn't broken online\n", + "# org_by_pos=False, # organize keywords by part of speech\n", + "# incl_visuals=['topic_num_evals', 'word_cloud', 'pyLDAvis'], # t_sne not zipping properly\n", + "# zip_results=True,\n", + "# )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.7" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": true, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}