forked from friendly/SAS-macros
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompmix.sas
496 lines (439 loc) · 13.8 KB
/
compmix.sas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/************************************************************************
COMPMIX macro
DISCLAIMER:
THIS INFORMATION IS PROVIDED BY SAS INSTITUTE INC. AS A SERVICE TO
ITS USERS. IT IS PROVIDED "AS IS". THERE ARE NO WARRANTIES,
EXPRESSED OR IMPLIED, AS TO MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE REGARDING THE ACCURACY OF THE MATERIALS OR CODE
CONTAINED HEREIN.
PURPOSE:
Fit multiple models with PROC MIXED and compare them using ideas from
Burnham, K.P. and Anderson, D.R. (1998).
AUTHOR:
Russ Wolfinger ([email protected]), August 1999.
REQUIRES:
Requires Base SAS and SAS/STAT software, Version 8 or later.
USAGE:
Before calling the COMPMIX macro, you must first define the macro in
your current SAS session. You can do this either by copying this file
into the SAS program editor and submitting it, or (as in the EXAMPLE
below) by using a %INCLUDE statement containing the path and filename
of this file on your system.
Once the macro is defined, call the macro using the desired options.
See the section below for an example.
The macro has the following parameters.
DATA= Specifies the SAS data set you are analyzing.
MODELS= Specifies the number of models you want to compare. Prior
to calling COMPMIX, you must define macro variables MODEL1
through MODELn, where n is the number you specify. These
macro variables contain PROC MIXED statements defining each
the models (see the Example).
METHOD= Specifies the likelihood method COMPMIX uses to compare
models. The default is ML (maximum likelihood). If you use
METHOD=REML, make sure all of your MODEL specifications are
identical.
PROCOPT= Specifies options to include in the PROC MIXED statements
used for all the models.
IC= Specifies the information criterion to use. Valid values
are AICC (the default), AIC, HQIC, BIC, and CAIC.
OPTIONS= Specifies additional options. You can specify the following
after the OPTIONS= argument:
LRT prints likelihood ratio tests of all models
with the first one.
PRINTALL prints all of the PROC MIXED runs.
PLOT plots the IC weights.
PRINTED OUTPUT:
The EXAMPLE below produces the following output as well as a high
resolution plot.
AICC Values
Cum
Obs Model Parms AICC Diff Odds Weight Weight
1 1 4 423.1 0.0000 1.00 0.64893 0.64893
2 3 6 425.4 2.3539 3.24 0.20002 0.84895
3 2 8 426.8 3.7789 6.62 0.09809 0.94704
4 4 8 428.1 5.0115 12.25 0.05296 1.00000
5 5 20 451.0 27.9097 1149524.57 0.00000 1.00000
EXAMPLE:
data pr;
input person gender$ y1-y4;
y=y1; age=8; output;
y=y2; age=10; output;
y=y3; age=12; output;
y=y4; age=14; output;
drop y1-y4;
datalines;
1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5
7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5
10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
run;
%let model1 = %str(
class gender person;
model y = gender|age;
repeated / sub=person type=cs group=gender;
);
%let model2 = %str(
class gender person;
model y = gender|age;
repeated / sub=person type=toep group=gender;
);
%let model3 = %str(
class gender person;
model y = gender|age;
repeated / sub=person type=arma(1,1) group=gender;
);
%let model4 = %str(
class gender person;
model y = gender|age;
random int age / type=un sub=person group=gender;
repeated / type=vc sub=person group=gender;
);
%let model5 = %str(
class gender person;
model y = gender|age;
repeated / sub=person type=un group=gender;
);
%include 'compmix8.sas' / nosource;
** Compare covariance models using reml **;
%compmix(data=pr,
models=5,
method=reml,
options=plot
)
run;
REFERENCES:
Burnham, K.P. and Anderson, D.R. (1998), Model Selection and Inference,
A Practical Information-Theoretic Approach, New York: Springer.
************************************************************************/
%macro compmix(data=,
models=,
labels=,
method=ml,
procopt=,
ic=AICC,
options=);
/*---initialization---*/
%if %bquote(&data)= %then %let data=&syslast;
%if %bquote(&models)= %then %let missing = MODELS=;
%else %let missing =;
%if %length(&missing) %then %do;
%put ERROR: The COMPMIX &missing argument is not present.;
%goto finish;
%end;
%let data = %qupcase(&data);
%let method = %qupcase(&method);
%let ic = %qupcase(&ic);
%let options = %qupcase(&options);
%let devdf = 0;
%let minic = 1000000;
%let solutionf = 0;
/*---turn off printing---*/
%if (not %index(&options,PRINTALL)) %then %do;
ods exclude all;
options nonotes nodate nonumber;
%end;
/*---print header---*/
%put;
%put %str( ) The COMPMIX Macro;
%put;
%put Input Data Set : &data;
%put Number of Models : ⊧
%put Estimation Method : &method;
%put Information Criterion : ⁣
%put;
/*---loop through models---*/
%do i = 1 %to ⊧
%put Fitting model &i;
%let label=%scan(&labels, &i, %str( ));
%if &label= %then %let label=&i;
/*---create symbol statements for plots---*/
%if (%index(&options,PLOT)) %then %do;
symbol&i color=blue font=swissl
value="&label" h=1.5 r=1;
%end;
/*---get rid of old fitting data set---*/
proc datasets lib=work nolist;
delete _ic;
run;
/*---fit the model---*/
proc mixed data=&data %if (&method=ML) %then %do; method=ml %end;
ic &procopt;
&&model&i
ods output infocrit=_ic;
%if (%index(%qupcase(&&model&i),SOLUTION)) %then %do;
ods output solutionf=_sf&i;
%let solutionf = 1;
%end;
run;
/*---check for convergence---*/
%let there = no;
data _null_;
set _ic;
call symput('there','yes');
run;
%if ("&there" = "no") %then %do;
%put %str( )WARNING: PROC MIXED did not converge for
model &i.;
%end;
/*---store information---*/
%else %do;
data _ic;
set _ic;
Model = &i;
label = scan("&labels", &i, ' ');
if label=' ' then label="&i";
if (&ic < &minic) then call symput('minic',&ic);
/*---compute likelihood ratio tests---*/
n2ll = neg2loglike;
%if (%index(&options,LRT)) %then %do;
%if (&devdf = 0) %then %do;
chisq = .;
df = .;
p = .;
%end;
%else %do;
chisq = abs(n2ll - &devn2ll);
df = abs(&devdf - parms);
if (df > 0) then p = 1 - probchi(chisq,df);
else p = .;
%end;
%end;
keep model label parms &ic n2ll;
run;
%if (&i=1) %then %do;
data _icall;
set _ic;
call symput('devdf',parms);
call symput('devn2ll',n2ll);
run;
%end;
%else %do;
proc append base=_icall data=_ic;
run;
%end;
%end;
%end;
/*---reset printing---*/
ods select all;
/*---compute &ic weights---*/
data _ic;
set _icall end=last;
retain sum 0;
Diff = &ic - &minic;
if (Diff < 1e-6) then Diff = 0;
else if (Diff > 100) then Diff = 100;
Odds = exp(0.5*Diff);
InvOdds = 1/Odds;
sum = sum + InvOdds;
if (last) then call symput('sum',sum);
run;
data _ic;
set _ic;
Weight = InvOdds / ∑
run;
/*---compute model-averaged solution for fixed effects---*/
%if (&solutionf = 1) %then %do;
/*---save number of fixed-effects parameters and alpha value---*/
data _null_;
set _sf1 nobs=count end=last;
if (alpha ne .) then call symput('alpha',alpha);
if (last) then do;
call symput('np',left(put(count,8.)));
end;
run;
/*---compute model-averaged estimate---*/
%do i = 1 %to ⊧
proc transpose data=_sf&i out=_sft;
var estimate;
run;
%if (&i = 1) %then %do;
data _sfta;
set _sft;
run;
%end;
%else %do;
proc append data=_sft base=_sfta;
run;
%end;
%end;
data _icw;
set _ic;
keep Weight;
run;
data _sfta;
merge _sfta _icw;
run;
proc means data=_sfta mean noprint;
var col1-col&np;
weight Weight;
output out=_sftam;
run;
proc transpose data=_sftam out=_sfae;
var col1-col&np;
where _stat_ = "MEAN";
id _stat_;
run;
/*---compute model-averaged standard errors---*/
%do i = 1 %to ⊧
data _sfv;
merge _sf&i _sfa0;
sea = sqrt(stderr**2 + (estimate-MEAN)**2);
run;
proc transpose data=_sfv out=_sft;
var sea;
run;
%if (&i = 1) %then %do;
data _sfta;
set _sft;
run;
%end;
%else %do;
proc append data=_sft base=_sfta;
run;
%end;
%end;
data _sfta;
merge _sfta _icw;
run;
proc means data=_sfta mean noprint;
var col1-col&np;
weight Weight;
output out=_sftam;
run;
proc transpose data=_sftam out=_sfas;
var col1-col&np;
where _stat_ = "MEAN";
id _stat_;
run;
/*---compute model-averaged dfs---*/
%do i = 1 %to ⊧
proc transpose data=_sf&i out=_sft;
var df;
run;
%if (&i = 1) %then %do;
data _sfta;
set _sft;
run;
%end;
%else %do;
proc append data=_sft base=_sfta;
run;
%end;
%end;
data _sfta;
merge _sfta _icw;
run;
proc means data=_sfta mean noprint;
var col1-col&np;
weight Weight;
output out=_sftam;
run;
proc transpose data=_sftam out=_sfad;
var col1-col&np;
where _stat_ = "MEAN";
id _stat_;
run;
/*---put them all together---*/
data _sfah;
set _sf1;
drop estimate stderr df tvalue probt alpha lower upper;
run;
data _sfae;
set _sfae;
Estimate = MEAN;
keep Estimate;
run;
data _sfas;
set _sfas;
StdErr = MEAN;
keep StdErr;
run;
data _sfad;
set _sfad;
DF = MEAN;
keep DF;
run;
data _sfa;
merge _sfah _sfae _sfas _sfad;
if (StdErr = .) or (StdErr = 0) then do;
tValue = .;
Probt = .;
Alpha = .;
Lower = .;
Upper = .;
end;
else do;
tValue = Estimate / StdErr;
Probt = 2*(1 - probt(abs(tvalue),df));
Alpha = α
tcrit = -tinv(&alpha / 2,df);
Lower = estimate - tcrit*stderr;
Upper = estimate + tcrit*stderr;
end;
drop tcrit;
run;
%end;
/*---print ic weights---*/
proc sort data=_ic;
by descending Weight;
run;
data _ic;
set _ic;
retain CumWeight 0;
CumWeight = CumWeight + Weight;
run;
title "&ic Values";
proc print data=_ic;
var Model Label Parms &ic Diff Odds Weight CumWeight;
run;
/*---print model-averaged solution for fixed effects---*/
%if (%index(&options,SOLUTION)) %then %do;
title "&ic Model-Averaged Solution for Fixed Effects";
proc print data=_sfa noobs;
run;
%end;
/*---print likelihood ratio tests---*/
%if (%index(&options,LRT)) %then %do;
title 'Likelihood Ratio Tests with Model 1';
proc print data=_icall noobs;
var m label parms n2ll chisq df p;
format n2ll 6.1 chisq 5.1 p 6.4;
run;
%end;
/*---construct plots---*/
%if (%index(&options,PLOT)) %then %do;
goptions hsize=6in vsize=8.5in htext=1.25 ftext=swissl;
title "&ic Model Weights";
proc gplot data=_ic;
plot Weight*Parms=Model / nolegend hminor=0 vminor=1;
run;
quit;
%end;
/*---finish up---*/
%finish:
options notes date number;
title;
%mend;