-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
677 lines (587 loc) · 26.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
import numpy as np
import cv2
import os
import pickle
import copy
E = 2.71828182846
# LAYERS
# Simple Layer; Size of a single input (Num of neurons from previous layer), Number of neurons you want to use;
class Layer_Dense:
def __init__(self, input_size, num_neurons, weight_l1_lambda=0, weight_l2_lambda=0, bias_l1_lambda=0, bias_l2_lambda=0):
# Random weights for every connection
self.weights = 0.01 * np.random.randn(input_size, num_neurons)
# Array of 0s
self.biases = np.zeros((1, num_neurons))
# L1 L2 Reqularization
self.weight_l1 = weight_l1_lambda
self.weight_l2 = weight_l2_lambda
self.bias_l1 = bias_l1_lambda
self.bias_l2 = bias_l2_lambda
def forward(self, inputs, training):
#remember inputs
self.inputs = inputs
# Outputs a single value for a single input (single input is [input_size]) per neuron; n values for n neurons; m arrays of n values for n neurons and m size of batch
# Output = [num_inputs][num_neurons] !!! num_inputs = batch size
self.output = np.dot(inputs, self.weights) + self.biases
def backward(self, values):
# Values = derivatives from ReLU or Softmax
# For more than 1 Neuron sum of Gradients is needed, hence np.dot/np.sum
# single weight: dW0 = x[0] * dReLU
self.dweights = np.dot(self.inputs.T, values)
# single bias: dB0 = dReLU
self.dbiases = np.sum(values, axis=0, keepdims=True)
# single input: dX0 = w[0] * dReLU
self.dinputs = np.dot(values, self.weights.T)
# L1 L2
# Derivative of L1
if self.weight_l1 > 0:
dL1 = np.ones_like(self.weights)
dL1[self.weights < 0] = -1
self.dweights += self.weight_l1 * dL1
# Derivative of L2
if self.weight_l2 > 0:
self.dweights += 2 * self.weight_l2 * self.weights
if self.bias_l1 > 0:
dL1 = np.ones_like(self.biases)
dL1[self.biases < 0] = -1
self.dbiases += self.bias_l1 * dL1
if self.bias_l2 > 0:
self.dbiases += 2 * self.bias_l2 * self.biases
def get_parameters(self):
return self.weights, self.biases
def set_parameters(self, weights, biases):
self.weights = weights
self.biases = biases
# Dropout: rate - % of neurons you want to disable
class Layer_Dropout:
def __init__(self, rate):
self.rate = 1 - rate
# Forward pass
def forward(self, inputs, training):
self.inputs = inputs
if not training:
self.output = inputs.copy()
return
# Generate array of 1s and 0s
self.binary_mask = np.random.binomial(1, self.rate, size=inputs.shape) / self.rate
# Apply mask
self.output = inputs * self.binary_mask
# Backward pass
def backward(self, dvalues):
self.dinputs = dvalues * self.binary_mask
class Layer_Input:
def forward(self, inputs, training):
self.output = inputs
# ACTIVATION FUNCTIONS
# Activation function 0 or X
# Outputs [num_inputs][num_neurons]
class Activation_ReLU:
def forward(self, inputs, training):
self.inputs = inputs
self.output = np.maximum(0, inputs)
def backward(self, values):
self.dinputs = values.copy()
# 0 Where inputs were < 0
self.dinputs[self.inputs <= 0] = 0
def predictions(self, outputs):
return outputs
# Softmax Activation function for output; For classification ~ Convert numbers to % Ex. [4, 2, 2] => [0.5, 0.25, 0.25]
# Outputs [num_inputs][num_neurons]
class Activation_Softmax:
def forward(self, inputs, training):
self.inputs = inputs
# e^input for every input; axis=1 => only Rows; keepdim => Keep dimensions
exp_vals = np.exp(inputs - np.max(inputs, axis=1, keepdims=True))
# previous values / sum
probabilities = exp_vals/np.sum(exp_vals, axis=1, keepdims=True)
self.output = probabilities
def backward(self, values):
self.dinputs = np.empty_like(values)
# Enumerate outputs and gradients
for index, (single_output, single_dvalues) in enumerate(zip(self.output, values)):
# Flatten output array
single_output = single_output.reshape(-1, 1)
# Calculate Jacobian matrix of the output and
jacobian_matrix = np.diagflat(single_output) - \
np.dot(single_output, single_output.T)
# Calculate sample-wise gradient
# and add it to the array of sample gradients
self.dinputs[index] = np.dot(jacobian_matrix,
single_dvalues)
def predictions(self, outputs):
return np.argmax(outputs, axis=1)
class Sigmoid_Activation:
def forward(self, inputs, training):
self.inputs = inputs
self.output = 1 / (1 + np.exp(-inputs))
def backward(self, values):
self.dinputs = values * (1 - self.output) * self.output
def predictions(self, outputs):
return (outputs > 0.5) * 1
# Regression
class Linear_Activation:
def forward(self, inputs, training):
self.inputs = inputs
self.output = inputs
def backward(self, values):
self.dinputs = values.copy()
def predictions(self, outputs):
return outputs
# LOSS
# Classification Cross Entropy function for loss calculation. Inputs are [[],...,[]] from Softmax, targets are correct objects [] or [[],...,[]];
# One value for N batch size
class Loss:
def calculate(self, output, targets, *, include_regularization=False):
sample_losses = self.forward(output, targets)
# Calculate average distance for whole batch
data_loss = np.mean(sample_losses)
# Add accumulated sum of losses and sample count
self.accumulated_sum += np.sum(sample_losses)
self.accumulated_count += len(sample_losses)
if not include_regularization:
return data_loss
return data_loss, self.regularize_loss()
def calculate_accumulated(self, *, include_regularization=False):
# Calculate mean loss
data_loss = self.accumulated_sum / self.accumulated_count
# If just data loss - return it
if not include_regularization:
return data_loss
# Return the data and regularization losses
return data_loss, self.regularize_loss()
def reset_accumulated(self):
self.accumulated_sum = 0
self.accumulated_count = 0
def remember_trainable_layers(self, trainable_layers):
self.trainable_layers = trainable_layers
def regularize_loss(self):
regularization_loss = 0
for layer in self.trainable_layers:
if layer.weight_l1 > 0:
regularization_loss += layer.weight_l1* np.sum(np.abs(layer.weights))
if layer.bias_l1 > 0:
regularization_loss += layer.bias_l1* np.sum(np.abs(layer.biases))
if layer.weight_l2 > 0:
regularization_loss += layer.weight_l2* np.sum(layer.weights * layer.weights)
if layer.bias_l2 > 0:
regularization_loss += layer.bias_l2* np.sum(layer.biases * layer.biases)
return regularization_loss
class Cross_Entropy(Loss):
# Calculate N values for N batch size; distance between Selected element and Wanted element
def forward(self, inputs, targets):
samples = len(inputs)
# Clip to prevent division by 0
inputs_clipped = np.clip(inputs, 1e-7, 1 - 1e-7)
# For list of correct indices Ex. for 3x3 Input [0, 1, 1]
if len(targets.shape) == 1:
confidences = inputs_clipped[range(samples), targets]
# For Full Matrix where 1 represents correct element Ex. for 3x3 [[0,0,1], [1,0,0], [0,0,1]]; correct values stay the same, wrong become 0 because of []*[]
elif len(targets.shape) == 2:
confidences = np.sum(inputs_clipped * targets, axis=1)
# Calculate log of values; Smaller the value bigger the loss.
self.log_of_max = -np.log(confidences)
return self.log_of_max
def backward(self, values, targets):
lenOfBatch = len(values)
lenOfValues = len(values[0])
# If lenOfValues are sparse, turn them into one-hot vector
if len(targets.shape) == 1:
targets = np.eye(lenOfValues)[targets]
self.dinputs = -targets / values
self.dinputs = self.dinputs / lenOfBatch
# Every output is binary (example: human or not human,...)
class Binary_Cross_Entropy(Loss):
def forward(self, inputs, targets):
inputs_clipped = np.clip(inputs, 1e-7, 1 - 1e-7)
losses = -(targets * np.log(inputs_clipped) + (1 - targets) * np.log(1 - inputs_clipped))
losses = np.mean(losses, axis=-1)
return losses
def backward(self, values, targets):
lenOfBatch = len(values)
lenOfValues = len(values[0])
clipped_values = np.clip(values, 1e-7, 1 - 1e-7)
self.dinputs = -(targets / clipped_values - (1 - targets) / (1 - clipped_values)) / lenOfValues
# Normalize gradient
self.dinputs = self.dinputs / lenOfBatch
# Softmax + CrossEntropy
class Softmax_CrossEntropy():
def __init__(self):
self.activation = Activation_Softmax()
self.loss = Cross_Entropy()
def forward(self, inputs, targets):
# Output layer's activation function
self.activation.forward(inputs)
# Set the output
self.output = self.activation.output
# Calculate and return loss value
return self.loss.calculate(self.output, targets)
def backward(self, values, targets):
# Number of samples
samples = len(values)
# If labels are one-hot encoded,
# turn them into discrete values
if len(targets.shape) == 2:
targets = np.argmax(targets, axis=1)
# Copy so we can safely modify
self.dinputs = values.copy()
# Calculate gradient; value - 1 where correct answer lies.
self.dinputs[range(samples), targets] -= 1
# Normalize gradient
self.dinputs = self.dinputs / samples
def predictions(self, outputs):
return np.argmax(outputs, axis=1)
class Mean_Squared_Loss(Loss):
def forward(self, inputs, targets):
# average of (Point - Predicted point) squared
loss = np.mean((targets - inputs)**2, axis=-1)
return loss
def backward(self, values, targets):
samples = len(values)
outputs = len(values[0])
self.dinputs = -2 * (targets - values) / outputs
# Normalize gradient
self.dinputs = self.dinputs / samples
def predictions(self, outputs):
return outputs
class Mean_Absolute_Loss(Loss):
def forward(self, inputs, targets):
loss = np.mean(np.abs(targets - inputs), axis=-1)
return loss
def backward(self, values, targets):
samples = len(values)
outputs = len(values[0])
self.dinputs = np.sign(targets - values) / outputs
# Normalize gradient
self.dinputs = self.dinputs / samples
# OPTIMIZERS
# TODO AdaGrad, RMSProp
class SGD_Optimizer:
def __init__(self, learning_rate=1., decay=0., momentum=0.):
self.learning_rate = learning_rate
self.current_learning_rate = learning_rate
self.momentum = momentum
self.decay = decay
self.iterations = 0
# if using decay, decay the learning rate based on iteration, to avoid local minimums
def update_params(self):
if self.decay:
self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations))
def update_layer(self, layer):
# if we use momentum
if self.momentum:
# init weight momentums
if not hasattr(layer, 'weight_momentums'):
layer.weight_momentums = np.zeros_like(layer.weights)
layer.bias_momentums = np.zeros_like(layer.biases)
# calculate updates from previous values; momentum ~ moving average from previous steps (1/2 step-1 + 1/4 step - 2 + 1/8 step - 3 + ....)
weight_updates = self.momentum * layer.weight_momentums - self.current_learning_rate * layer.dweights
bias_updates = self.momentum * layer.bias_momentums - self.current_learning_rate * layer.dbiases
# set new values
layer.weight_momentums = weight_updates
layer.bias_momentums = bias_updates
# Vanilla SGD
else:
weight_updates = -self.current_learning_rate * layer.dweights
bias_updates = -self.current_learning_rate * layer.dbiases
# set new params
layer.weights += weight_updates
layer.biases += bias_updates
def update_iteration(self):
self.iterations += 1
class Adam_Optimizer:
def __init__(self, learning_rate=0.001, decay=0., epsilon=1e-7,
beta_1=0.9, beta_2=0.999):
self.learning_rate = learning_rate
self.current_learning_rate = learning_rate
self.decay = decay
self.iterations = 0
self.epsilon = epsilon
self.beta_1 = beta_1
self.beta_2 = beta_2
def update_params(self):
if self.decay:
self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations))
#self.iterations += 1
def update_layer(self, layer):
# init cache
if not hasattr(layer, 'weight_cache'):
layer.weight_momentums = np.zeros_like(layer.weights)
layer.weight_cache = np.zeros_like(layer.weights)
layer.bias_momentums = np.zeros_like(layer.biases)
layer.bias_cache = np.zeros_like(layer.biases)
# update momentum with current gradients
# Adaptive gradient
layer.weight_momentums = self.beta_1 * layer.weight_momentums + (1 - self.beta_1) * layer.dweights
layer.bias_momentums = self.beta_1 * layer.bias_momentums + (1 - self.beta_1) * layer.dbiases
# Update cache with squared current gradients, momentum for second order derivative
# RMSProp
layer.weight_cache = self.beta_2 * layer.weight_cache + (1 - self.beta_2) * layer.dweights ** 2
layer.bias_cache = self.beta_2 * layer.bias_cache + (1 - self.beta_2) * layer.dbiases ** 2
# Bias adjustment
weight_momentums_adjusted = layer.weight_momentums / (1 - self.beta_1 ** (self.iterations + 1))
bias_momentums_adjusted = layer.bias_momentums / (1 - self.beta_1 ** (self.iterations + 1))
weight_cache_adjusted = layer.weight_cache / (1 - self.beta_2 ** (self.iterations + 1))
bias_cache_adjusted = layer.bias_cache / (1 - self.beta_2 ** (self.iterations + 1))
# Vanilla SGD parameter update + normalization
# with square rooted cache
layer.weights += -self.current_learning_rate * weight_momentums_adjusted / (np.sqrt(weight_cache_adjusted) + self.epsilon)
layer.biases += -self.current_learning_rate * bias_momentums_adjusted / (np.sqrt(bias_cache_adjusted) + self.epsilon)
def update_iteration(self):
self.iterations += 1
# ACCURACY
class Accuracy:
def calculate(self, values, targets):
comparisons = self.compare(values, targets)
self.accumulated_sum += np.sum(comparisons)
self.accumulated_count += len(comparisons)
accuracy = np.mean(comparisons)
return accuracy
def calculate_accumulated(self):
# Calculate an accuracy
accuracy = self.accumulated_sum / self.accumulated_count
return accuracy
def reset_accumulated(self):
self.accumulated_sum = 0
self.accumulated_count = 0
class Accuracy_Regression(Accuracy):
def __init__(self):
self.precision = None
def init(self, targets, reinit=False):
if self.precision is None or reinit:
self.precision = np.std(targets) / 250
def compare(self, values, targets):
return np.absolute(values - targets) < self.precision
class Accuracy_Classification(Accuracy):
def init(self, y):
pass
def compare(self, values, targets):
if len(targets.shape) == 2:
targets = np.argmax(targets, axis=1)
return values == targets
# MODEL #
class Model:
def __init__(self):
self.layers = []
def add(self, layer):
self.layers.append(layer)
def set(self, *, loss=None, optimizer=None, accuracy=None):
if loss is not None:
self.loss = loss
if optimizer is not None:
self.optimizer = optimizer
if accuracy is not None:
self.accuracy = accuracy
def train(self, X, y, *, batch_size=None ,epochs=1, print_every=1, validation_data=None):
steps = 1
self.accuracy.init(y)
if validation_data is not None:
validation_steps = 1
X_val, y_val = validation_data
if batch_size is not None:
steps = len(X) //batch_size
if steps * batch_size < X.shape[0]:
steps += 1
if validation_data is not None:
validation_steps = len(X_val) // batch_size
if validation_steps * batch_size < len(X_val):
validation_steps += 1
self.loss.reset_accumulated()
self.accuracy.reset_accumulated()
for epoch in range(1, epochs + 1):
print(f'epoch: {epoch}')
self.loss.reset_accumulated()
self.accuracy.reset_accumulated()
for step in range(steps):
if batch_size is None:
batch_X = X
batch_y = y
else:
batch_X = X[step * batch_size:(step + 1) * batch_size]
batch_y = y[step * batch_size:(step + 1) * batch_size]
output = self.forward(batch_X, training=True)
dataloss, regularization_loss = self.loss.calculate(output, batch_y, include_regularization=True)
loss = dataloss + regularization_loss
predictions = self.output_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, batch_y)
self.backward(output, batch_y)
self.optimizer.update_params()
for layer in self.trainable_layers:
self.optimizer.update_layer(layer)
self.optimizer.update_iteration()
if not step % print_every or step == steps - 1:
print(f'step: {step}, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f} (' +
f'data_loss: {dataloss:.3f}, ' +
f'reg_loss: {regularization_loss:.3f}), ' +
f'lr: {self.optimizer.current_learning_rate}')
epoch_data_loss, epoch_regularization_loss = self.loss.calculate_accumulated(include_regularization=True)
epoch_loss = epoch_data_loss + epoch_regularization_loss
epoch_accuracy = self.accuracy.calculate_accumulated()
print(f'training, ' +
f'acc: {epoch_accuracy:.3f}, ' +
f'loss: {epoch_loss:.3f} (' +
f'data_loss: {epoch_data_loss:.3f}, ' +
f'reg_loss: {epoch_regularization_loss:.3f}), ' +
f'lr: {self.optimizer.current_learning_rate}')
if validation_data is not None:
self.loss.reset_accumulated()
self.accuracy.reset_accumulated()
for step in range(validation_steps):
if batch_size is None:
batch_X = X_val
batch_y = y_val
else:
batch_X = X_val[ step * batch_size:(step + 1) * batch_size]
batch_y = y_val[ step * batch_size:(step + 1) * batch_size]
output = self.forward(batch_X, training=False)
self.loss.calculate(output, batch_y)
predictions = self.output_activation.predictions(output)
self.accuracy.calculate(predictions, batch_y)
validation_loss = self.loss.calculate_accumulated()
validation_accuracy = self.accuracy.calculate_accumulated()
print(f'validation, ' +
f'acc: {validation_accuracy:.3f}, ' +
f'loss: {validation_loss:.3f}')
# Create references for prev and next layer. Used for forward/backward
def connectLayers(self):
self.input_layer = Layer_Input()
count = len(self.layers)
self.trainable_layers = []
for i in range(count):
if i == 0:
self.layers[i].prev = self.input_layer
self.layers[i].next = self.layers[i + 1]
elif i < count - 1:
self.layers[i].prev = self.layers[i - 1]
self.layers[i].next = self.layers[i + 1]
else:
self.layers[i].prev = self.layers[i - 1]
self.layers[i].next = self.loss
self.output_activation = self.layers[i]
if hasattr(self.layers[i], 'weights'):
self.trainable_layers.append(self.layers[i])
if self.loss is not None:
self.loss.remember_trainable_layers(self.trainable_layers)
if isinstance(self.layers[-1], Activation_Softmax) and isinstance(self.loss, Cross_Entropy):
# Create an object of combined activation
# and loss functions
self.softmax_classifier_output = Softmax_CrossEntropy()
def forward(self, X, training):
self.input_layer.forward(X, training)
for layer in self.layers:
layer.forward(layer.prev.output, training)
return layer.output
def backward(self, values, targets):
if self.softmax_classifier_output is not None:
self.softmax_classifier_output.backward(values, targets)
self.layers[-1].dinputs = self.softmax_classifier_output.dinputs
for layer in reversed(self.layers[:-1]):
layer.backward(layer.next.dinputs)
return
self.loss.backward(values, targets)
for layer in reversed(self.layers):
layer.backward(layer.next.dinputs)
def evaluate(self, X_val, y_val, *, batch_size=None):
validation_steps = 1
if batch_size is not None:
validation_steps = len(X_val) // batch_size
if validation_steps * batch_size < len(X_val):
validation_steps += 1
self.loss.reset_accumulated()
self.accuracy.reset_accumulated()
for step in range(validation_steps):
if batch_size is None:
batch_X = X_val
batch_y = y_val
else:
batch_X = X_val[step * batch_size:(step + 1) * batch_size]
batch_y = y_val[step * batch_size:(step + 1) * batch_size]
output = self.forward(batch_X, training=False)
self.loss.calculate(output, batch_y)
predictions = self.output_activation.predictions(
output)
self.accuracy.calculate(predictions, batch_y)
validation_loss = self.loss.calculate_accumulated()
validation_accuracy = self.accuracy.calculate_accumulated()
print(f'validation, ' +
f'acc: {validation_accuracy:.3f}, ' +
f'loss: {validation_loss:.3f}')
def predict(self, X, *, batch_size=None):
prediction_steps = 1
output = []
if batch_size is not None:
prediction_steps = len(X) // batch_size
if prediction_steps * batch_size < len(X):
prediction_steps += 1
for step in range(prediction_steps):
if batch_size is None:
batch_X = X
else:
batch_X = X[step * batch_size:(step + 1) * batch_size]
batch_output = self.forward(batch_X, training=False)
output.append(batch_output)
output = np.vstack(output)
return output
def get_parameters(self):
params=[]
for layer in self.trainable_layers:
params.append(layer.get_parameters())
return params
def set_parameters(self, params):
for param_layer, layer in zip(params, self.trainable_layers):
layer.set_parameters(*param_layer)
def save_parameters(self, path):
with open(path, 'wb') as f:
pickle.dump(self.get_parameters(), f)
def load_parameters(self, path):
with open(path, 'rb') as f:
self.set_parameters(pickle.load(f))
def save(self, path):
model = copy.deepcopy(self)
model.loss.reset_accumulated()
model.accuracy.reset_accumulated()
# Remove properties
model.input_layer.__dict__.pop('output', None)
model.loss.__dict__.pop('dinputs', None)
for layer in model.layers:
for property in ['inputs', 'output', 'dinputs', 'dweights', 'dbiases']:
layer.__dict__.pop(property, None)
with open(path, 'wb') as f:
pickle.dump(model, f)
@staticmethod
def load(path):
with open(path, 'rb') as f:
model = pickle.load(f)
return model
class Data:
def load_mnist_dataset(self, dataset, path):
labels = os.listdir(os.path.join(path, dataset))
X = []
y = []
for label in labels:
for file in os.listdir(os.path.join(path, dataset, label)):
image = cv2.imread(os.path.join(
path, dataset, label, file
), cv2.IMREAD_UNCHANGED)
X.append(image)
y.append(label)
# Convert the data to proper numpy arrays and return
return np.array(X), np.array(y).astype('uint8')
def create_data_mnist(self, path):
X, y = self.load_mnist_dataset('train', path)
X_test, y_test = self.load_mnist_dataset('test', path)
# And return all the data
return X, y, X_test, y_test
def scale_data_mnist(self, X,):
X = (X.astype(np.float32) - 127.5) / 127.5
return X
def flatten_data(self, X):
X = X.reshape(X.shape[0], -1)
return X
def reshuffle_data(self, X, y):
keys = np.array(range(X.shape[0]))
np.random.shuffle(keys)
X = X[keys]
y = y[keys]
return X,y