-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathutils.py
160 lines (130 loc) · 4.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.contrib.layers.python.layers import initializers
import tensorflow as tf
slim = tf.contrib.slim
epsilon = 1e-9
def _matmul_broadcast(x, y, name):
"""Compute x @ y, broadcasting over the first `N - 2` ranks.
"""
with tf.variable_scope(name) as scope:
return tf.reduce_sum(
tf.nn.dropout(x[..., tf.newaxis] * y[..., tf.newaxis, :, :],1), axis=-2
)
def _get_variable_wrapper(
name, shape=None, dtype=None, initializer=None,
regularizer=None,
trainable=True,
collections=None,
caching_device=None,
partitioner=None,
validate_shape=True,
custom_getter=None
):
"""Wrapper over tf.get_variable().
"""
with tf.device('/cpu:0'):
var = tf.get_variable(
name, shape=shape, dtype=dtype, initializer=initializer,
regularizer=regularizer, trainable=trainable,
collections=collections, caching_device=caching_device,
partitioner=partitioner, validate_shape=validate_shape,
custom_getter=custom_getter
)
return var
def _get_weights_wrapper(
name, shape, dtype=tf.float32, initializer=initializers.xavier_initializer(),
weights_decay_factor=None
):
"""Wrapper over _get_variable_wrapper() to get weights, with weights decay factor in loss.
"""
weights = _get_variable_wrapper(
name=name, shape=shape, dtype=dtype, initializer=initializer
)
if weights_decay_factor is not None and weights_decay_factor > 0.0:
weights_wd = tf.multiply(
tf.nn.l2_loss(weights), weights_decay_factor, name=name + '/l2loss'
)
tf.add_to_collection('losses', weights_wd)
return weights
def _get_biases_wrapper(
name, shape, dtype=tf.float32, initializer=tf.constant_initializer(0.0)
):
"""Wrapper over _get_variable_wrapper() to get bias.
"""
biases = _get_variable_wrapper(
name=name, shape=shape, dtype=dtype, initializer=initializer
)
return biases
def _conv2d_wrapper(inputs, shape, strides, padding, add_bias, activation_fn, name, stddev=0.1):
"""Wrapper over tf.nn.conv2d().
"""
with tf.variable_scope(name) as scope:
kernel = _get_weights_wrapper(
name='weights', shape=shape, weights_decay_factor=0.0, #initializer=tf.truncated_normal_initializer(stddev=stddev, dtype=tf.float32)
)
output = tf.nn.conv2d(
inputs, filter=kernel, strides=strides, padding=padding, name='conv'
)
if add_bias:
biases = _get_biases_wrapper(
name='biases', shape=[shape[-1]]
)
output = tf.add(
output, biases, name='biasAdd'
)
if activation_fn is not None:
output = activation_fn(
output, name='activation'
)
return output
def _separable_conv2d_wrapper(inputs, depthwise_shape, pointwise_shape, strides, padding, add_bias, activation_fn, name):
"""Wrapper over tf.nn.separable_conv2d().
"""
with tf.variable_scope(name) as scope:
dkernel = _get_weights_wrapper(
name='depthwise_weights', shape=depthwise_shape, weights_decay_factor=0.0
)
pkernel = _get_weights_wrapper(
name='pointwise_weights', shape=pointwise_shape, weights_decay_factor=0.0
)
output = tf.nn.separable_conv2d(
input=inputs, depthwise_filter=dkernel, pointwise_filter=pkernel,
strides=strides, padding=padding, name='conv'
)
if add_bias:
biases = _get_biases_wrapper(
name='biases', shape=[pointwise_shape[-1]]
)
output = tf.add(
output, biases, name='biasAdd'
)
if activation_fn is not None:
output = activation_fn(
output, name='activation'
)
return output
def _depthwise_conv2d_wrapper(inputs, shape, strides, padding, add_bias, activation_fn, name):
"""Wrapper over tf.nn.depthwise_conv2d().
"""
with tf.variable_scope(name) as scope:
dkernel = _get_weights_wrapper(
name='depthwise_weights', shape=shape, weights_decay_factor=0.0
)
output = tf.nn.depthwise_conv2d(
inputs, filter=dkernel, strides=strides, padding=padding, name='conv'
)
if add_bias:
d_ = output.get_shape()[-1].value
biases = _get_biases_wrapper(
name='biases', shape=[d_]
)
output = tf.add(
output, biases, name='biasAdd'
)
if activation_fn is not None:
output = activation_fn(
output, name='activation'
)
return output