-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathrocket_functions.py
111 lines (71 loc) · 2.96 KB
/
rocket_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Angus Dempster, Francois Petitjean, Geoff Webb
#
# @article{dempster_etal_2020,
# author = {Dempster, Angus and Petitjean, Fran\c{c}ois and Webb, Geoffrey I},
# title = {ROCKET: Exceptionally fast and accurate time classification using random convolutional kernels},
# year = {2020},
# journal = {Data Mining and Knowledge Discovery},
# doi = {https://doi.org/10.1007/s10618-020-00701-z}
# }
#
# https://arxiv.org/abs/1910.13051 (preprint)
import numpy as np
from numba import njit, prange
@njit("Tuple((float64[:],int32[:],float64[:],int32[:],int32[:]))(int64,int64)")
def generate_kernels(input_length, num_kernels):
candidate_lengths = np.array((7, 9, 11), dtype = np.int32)
lengths = np.random.choice(candidate_lengths, num_kernels)
weights = np.zeros(lengths.sum(), dtype = np.float64)
biases = np.zeros(num_kernels, dtype = np.float64)
dilations = np.zeros(num_kernels, dtype = np.int32)
paddings = np.zeros(num_kernels, dtype = np.int32)
a1 = 0
for i in range(num_kernels):
_length = lengths[i]
_weights = np.random.normal(0, 1, _length)
b1 = a1 + _length
weights[a1:b1] = _weights - _weights.mean()
biases[i] = np.random.uniform(-1, 1)
dilation = 2 ** np.random.uniform(0, np.log2((input_length - 1) / (_length - 1)))
dilation = np.int32(dilation)
dilations[i] = dilation
padding = ((_length - 1) * dilation) // 2 if np.random.randint(2) == 1 else 0
paddings[i] = padding
a1 = b1
return weights, lengths, biases, dilations, paddings
@njit(fastmath = True)
def apply_kernel(X, weights, length, bias, dilation, padding):
input_length = len(X)
output_length = (input_length + (2 * padding)) - ((length - 1) * dilation)
_ppv = 0
_max = np.NINF
end = (input_length + padding) - ((length - 1) * dilation)
for i in range(-padding, end):
_sum = bias
index = i
for j in range(length):
if index > -1 and index < input_length:
_sum = _sum + weights[j] * X[index]
index = index + dilation
if _sum > _max:
_max = _sum
if _sum > 0:
_ppv += 1
return _ppv / output_length, _max
@njit("float64[:,:](float64[:,:],Tuple((float64[::1],int32[:],float64[:],int32[:],int32[:])))", parallel = True, fastmath = True)
def apply_kernels(X, kernels):
weights, lengths, biases, dilations, paddings = kernels
num_examples, _ = X.shape
num_kernels = len(lengths)
_X = np.zeros((num_examples, num_kernels * 2), dtype = np.float64) # 2 features per kernel
for i in prange(num_examples):
a1 = 0 # for weights
a2 = 0 # for features
for j in range(num_kernels):
b1 = a1 + lengths[j]
b2 = a2 + 2
_X[i, a2:b2] = \
apply_kernel(X[i], weights[a1:b1], lengths[j], biases[j], dilations[j], paddings[j])
a1 = b1
a2 = b2
return _X