diff --git a/README.md b/README.md index 85d737c..25d5067 100644 --- a/README.md +++ b/README.md @@ -15,7 +15,6 @@ This is an on-going attempt to consolidate interesting efforts in the area of un * [Lucid](https://github.com/tensorflow/lucid) (activation maximization, heatmaps, Tensorflow) # Surveys - * Methods for Interpreting and Understanding Deep Neural Networks. _Montavon et al. 2017_ [pdf](https://arxiv.org/pdf/1706.07979.pdf) * Visualizations of Deep Neural Networks in Computer Vision: A Survey. _Seifert et al. 2017_ [pdf](https://link.springer.com/chapter/10.1007/978-3-319-54024-5_6) * How convolutional neural network see the world - A survey of convolutional neural network visualization methods. _Qin et al. 2018_ [pdf](https://arxiv.org/abs/1804.11191) @@ -24,6 +23,7 @@ This is an on-going attempt to consolidate interesting efforts in the area of un * Understanding Neural Networks via Feature Visualization: A survey. _Nguyen et al. 2019_ [pdf](https://arxiv.org/pdf/1904.08939.pdf) * Explaining Explanations: An Overview of Interpretability of Machine Learning. _Gilpin et al. 2019_ [pdf](https://arxiv.org/pdf/1806.00069.pdf) * DARPA updates on the XAI program [pdf](https://www.darpa.mil/attachments/XAIProgramUpdate.pdf) +* A Survey on Explainable Artificial Intelligence (XAI): towards Medical XAI. _Toja et al. [pdf](https://arxiv.org/pdf/1907.07374.pdf) #### Definitions of Interpretability * The Mythos of Model Interpretability. _Lipton 2016_ [pdf](https://arxiv.org/abs/1606.03490) @@ -64,6 +64,7 @@ This is an on-going attempt to consolidate interesting efforts in the area of un * Distilling a Neural Network Into a Soft Decision Tree [pdf](https://arxiv.org/abs/1711.09784) * Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation. _Tan et al. 2018_ [pdf](https://arxiv.org/abs/1710.06169) * Improving the Interpretability of Deep Neural Networks with Knowledge Distillation. _Liu et al. 2018_ [pdf](https://arxiv.org/pdf/1812.10924.pdf) +* EDIT: Interpreting Ensemble Models via Compact Soft Decision Trees. _Yoo et al. 2019 (https://pdfs.semanticscholar.org/7a86/aaa70dc919af0d30eccc364583b9a09839c6.pdf?_ga=2.158361272.382053237.1579885022-681255730.1545175980) ## A4. Quantitatively characterizing hidden features * TCAV: Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors. _Kim et al. 2018_ [pdf](https://arxiv.org/abs/1711.11279) | [code](https://github.com/tensorflow/tcav) @@ -134,6 +135,7 @@ This is an on-going attempt to consolidate interesting efforts in the area of un * A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations. _Nie et al. 2018_ [pdf](https://arxiv.org/abs/1805.07039) * BIM: Towards Quantitative Evaluation of Interpretability Methods with Ground Truth. _Yang et al. 2019_ [pdf](https://arxiv.org/abs/1907.09701) * On the (In)fidelity and Sensitivity for Explanations. _Yeh et al. 2019_ [pdf](https://arxiv.org/pdf/1901.09392.pdf) +* BIM: Towards Quantitative Evaluation of Interpretability Methods with Ground Truth. _Yang et al. 2019 [pdf](https://arxiv.org/pdf/1907.09701.pdf) | ## B2. Learning to explain * Learning how to explain neural networks: PatternNet and PatternAttribution [pdf](https://arxiv.org/abs/1705.05598) @@ -148,7 +150,14 @@ This is an on-going attempt to consolidate interesting efforts in the area of un * Counterfactual Visual Explanations. _Goyal et al. 2019_ [pdf](https://arxiv.org/pdf/1904.07451.pdf) * Generative Counterfactual Introspection for Explainable Deep Learning. _Liu et al. 2019_ [pdf](https://arxiv.org/abs/1907.03077) -# D. Others +#D. Using Attention for Training +* Squeeze-and-Excitation Networks. _Hu et al. 2017_ [pdf](https://arxiv.org/pdf/1709.01507.pdf) +* CBAM: Convolutional Block Attention Module. _Woo et al. 2018 [pdf](https://arxiv.org/pdf/1807.06521.pdf) | [code](https://github.com/Jongchan/attention-module/blob/master) +* Sharpen Focus: Learning with Attention Separability and Consistency. _Wang et al. 2019 [pdf](https://arxiv.org/pdf/1811.07484.pdf) +* Tell Me Where to Look: Guided Attention Inference Network. _Li et al. 2018 [pdf](https://arxiv.org/pdf/1802.10171.pdf) | [code](https://github.com/ngxbac/GAIN) +* Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks Via Attention Transfer _Zagoruyko et al. 2017 [pdf](https://openreview.net/pdf?id=Sks9_ajex) + +# E. Others * Yang, S. C. H., & Shafto, P. Explainable Artificial Intelligence via Bayesian Teaching. NIPS 2017 [pdf](http://shaftolab.com/assets/papers/yangShafto_NIPS_2017_machine_teaching.pdf) * Explainable AI for Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation [pdf](http://www.antoniosliapis.com/papers/explainable_ai_for_designers.pdf) * ICADx: Interpretable computer aided diagnosis of breast masses. _Kim et al. 2018_ [pdf](https://arxiv.org/abs/1805.08960)