-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenvironment.py
executable file
·609 lines (510 loc) · 27.4 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import os, sys, glob, time, copy
from os import sys, path
import gym
import numpy as np
from collections import deque
from gym.spaces.box import Box
from skimage.measure import label, block_reduce
from skimage.morphology import disk
from skimage.morphology import binary_dilation
import skimage.io as io
from sklearn.metrics import adjusted_rand_score
from skimage.transform import resize as resize3D
from Utils.utils import *
from Utils.img_aug_func import *
import albumentations as A
import cv2
import random
from gym.spaces import Box, Discrete, Tuple
import matplotlib.pyplot as plt
from malis import rand_index
from random import shuffle
from PIL import Image, ImageFilter
from utils import guassian_weight_map, density_map, malis_rand_index, malis_f1_score, adjusted_rand_index
from skimage.draw import line_aa
from misc.Voronoi import *
import time
from rewards import *
# python main.py --env EM_env_DEBUG_1 --gpu-id 0 1 2 3 4 5 6 7 --workers 12 --lbl-agents 2 \--num-steps 5 --max-episode-length 5 --reward normal --model DilatedUNet --merge_radius 16 --merge_speed 2 --split_radius 64 --split_speed 4 --use-lbl --size 128 128 --hidden-feat 2 --log-period 10 --features 32 64 128 256 --downsample 2 --data zebrafish
class General_env (gym.Env):
def init (self, config):
self.T = config ['T']
self.tempT = config ["tempT"]
self.size = config ["size"]
if config ["use_lbl"]:
self.observation_space = Box (0, 1.0, shape=[config["observation_shape"][0]] + self.size, dtype=np.float32)
else:
self.observation_space = Box (-1.0, 1.0, shape=[config["observation_shape"][0]] + self.size, dtype=np.float32)
self.rng = np.random.RandomState(time_seed ())
self.max_lbl = 2 ** (self .T) - 1
self.pred_lbl2rgb = color_generator (self.max_lbl + 1)
self.gt_lbl2rgb = color_generator (111)
self.is3D = self.config ["3D"]
if self.config ["exp_pool"] > 0:
self.pool = []
self.pool_capacity = self.config ["exp_pool"]
self.pool_iter = 0
self.pool_period = 10
def seed (self, seed):
self.rng = np.random.RandomState(seed)
def aug (self, image, mask):
if self.is3D:
if not (self.size[1] == self.size[2] == self.size[0]):
[image, mask] = FlipRev3D ([image, mask], self.rng)
rotn = self.rng.randint (4)
[image, mask] = [rotate3D (img, rotn) for img in [image, mask]]
else:
[image, mask] = RotFlipRev3D ([image, mask], self.rng)
ret = {"image": image, "mask": mask}
return ret ['image'], ret ['mask']
if self.config ["data"] == "zebrafish":
randomBrightness = A.RandomBrightness (p=0.3, limit=0.1)
RandomContrast = A.RandomContrast (p=0.1, limit=0.1)
else:
randomBrightness = A.RandomBrightness (p=0.7, limit=0.1)
RandomContrast = A.RandomContrast (p=0.5, limit=0.1)
if image.shape [-1] == 3:
if self.config ["data"] in ["Cityscape", "kitti"]:
aug = A.Compose([
A.HorizontalFlip (p=0.5),
A.OneOf([
A.ElasticTransform(p=0.9, alpha=1, sigma=5, alpha_affine=5, interpolation=cv2.INTER_NEAREST),
A.OpticalDistortion(p=0.9, distort_limit=(0.2, 0.2), shift_limit=(0, 0), interpolation=cv2.INTER_NEAREST, border_mode=cv2.BORDER_CONSTANT),
], p=0.7),
A.ShiftScaleRotate (p=0.7, shift_limit=0.2, rotate_limit=10, interpolation=cv2.INTER_NEAREST, scale_limit=(-0.4, 0.4), border_mode=cv2.BORDER_CONSTANT),
A.RandomBrightness (p=0.7, limit=0.5),
A.RandomContrast (p=0.5),
A.GaussNoise (p=0.5),
A.Blur (p=0.5, blur_limit=4),
]
)
else:
aug = A.Compose([
A.HorizontalFlip (p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.Transpose (p=0.5),
A.OneOf([
A.ElasticTransform(p=0.9, alpha=1, sigma=5, alpha_affine=5, interpolation=cv2.INTER_NEAREST),
A.GridDistortion(p=0.9, interpolation=cv2.INTER_NEAREST, border_mode=cv2.BORDER_CONSTANT),
A.OpticalDistortion(p=0.9, distort_limit=(0.2, 0.2), shift_limit=(0, 0), interpolation=cv2.INTER_NEAREST, border_mode=cv2.BORDER_CONSTANT),
], p=0.7),
A.ShiftScaleRotate (p=0.7, shift_limit=0.3, rotate_limit=180, interpolation=cv2.INTER_NEAREST, scale_limit=(-0.3, 0.5), border_mode=cv2.BORDER_CONSTANT),
A.CLAHE(p=0.3),
A.RandomBrightness (p=0.7, limit=0.5),
A.RandomContrast (p=0.5),
A.GaussNoise (p=0.5),
A.Blur (p=0.5, blur_limit=4),
]
)
else:
aug = A.Compose([
A.HorizontalFlip (p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.Transpose (p=0.5),
A.OneOf([
A.ElasticTransform(p=0.5, alpha=1, sigma=5, alpha_affine=5, interpolation=cv2.INTER_NEAREST),
A.GridDistortion(p=0.5, interpolation=cv2.INTER_NEAREST, border_mode=cv2.BORDER_CONSTANT),
A.OpticalDistortion(p=0.5, distort_limit=(0.2, 0.2), shift_limit=(0, 0), interpolation=cv2.INTER_NEAREST, border_mode=cv2.BORDER_CONSTANT),
], p=0.6),
A.ShiftScaleRotate (p=0.5, shift_limit=0.3, rotate_limit=180, interpolation=cv2.INTER_NEAREST, scale_limit=(-0.2, 0.2), border_mode=cv2.BORDER_CONSTANT),
# A.CLAHE(p=0.3),
randomBrightness,
RandomContrast,
A.GaussNoise (p=0.5),
A.Blur (p=0.3, blur_limit=4),
]
)
if self.config ["DEBUG"] or self.config ["no_aug"]:
aug = A.Compose ([])
ret = aug (image=image, mask=mask)
return ret ['image'], ret ['mask']
def highres_action (self, action):
return cv2.resize (action, (self.size [1], self.size[0]), interpolation=cv2.INTER_NEAREST)
def lowres_reward (self, reward):
return block_reduce (reward, (2, 2), np.mean)
def step_inference (self, action):
if self.config ["lowres"]:
action = self.highres_action (action)
self.action = action
self.new_lbl = self.lbl + action * (2 ** self.step_cnt)
self.lbl = self.new_lbl
done = False
info = {}
reward = np.zeros (self.size, dtype=np.float32)
self.mask [self.step_cnt:self.step_cnt+1] += (2 * action - 1) * 255
self.step_cnt += 1
if self.step_cnt >= min (self.T, self.tempT):
done = True
if self.config ["lowres"]:
reward = self.lowres_reward (reward)
ret = (self.observation (), reward, done, info)
return ret
def step (self, action):
if self.config ["lowres"]:
action = self.highres_action (action)
self.action = action
self.new_lbl = self.lbl + action * (2 ** self.step_cnt)
done = False
self.mask [self.step_cnt:self.step_cnt+1] += (2 * action - 1) * 255
info = {}
if (self.step_cnt == 0):
reward = self.first_step_reward ()
self.lbl = self.new_lbl
self.step_cnt += 1
self.rewards.append (reward)
self.sum_reward += reward
if self.config ["lowres"]:
reward = self.lowres_reward (reward)
ret = (self.observation (), reward, done, info)
return ret
reward = np.zeros (self.size, dtype=np.float32)
# reward += self.foreground_reward (self.step_cnt>=self.T)
reward += self.background_reward (False)
split_reward = np.zeros (self.size, dtype=np.float32)
merge_reward = np.zeros (self.size, dtype=np.float32)
split_reward_inr = np.zeros (self.size, dtype=np.float32)
merge_ratio = np.zeros (self.size, dtype=np.float32)
split_ratio = np.zeros (self.size, dtype=np.float32)
range_split = 2.0 * 2 * len (self.bdrs) * self.config ["spl_w"]
range_merge = 2.0 * 2 * len (self.inrs) * self.config ["mer_w"]
if self.config ["reward"] == "seg":
scaler = None
# print (len (self.bdrs [1]), len (self.bdrs [0]), len (np.unique (self.gt_lbl)), len (self.segs), len (self.inrs))
# while (True):
# pass
for i in range (len (self.bdrs)):
if self.config ["split"] == 'prox':
split_reward += split_reward_s (self.lbl, self.new_lbl, self.gt_lbl, self.step_cnt==0,
self.inrs [0], self.inrs [0], self.bdrs [i], self.T, scaler, self.idx_list, self.keep)
if self.config ["split"] == 'ins':
split_reward += split_reward_ins (self.lbl, self.new_lbl, self.gt_lbl, self.step_cnt==0,
self.inrs [0], self.inrs [0], self.bdrs [i], self.T, scaler, self.idx_list, self.keep)
for i in range (len (self.inrs)):
merge_reward += merge_reward_s (self.lbl, self.new_lbl, self.gt_lbl, self.step_cnt==0,
self.segs, self.inrs [i], self.bdrs [0], self.T, scaler, self.idx_list, self.keep)
# merge_reward += merge_reward_step (action, self.gt_lbl, self.step_cnt==0, self.segs, self.inrs [0], self.bdrs [0], self.T, scaler, self.idx_list)
# merge_reward += merge_pen_action (action, self.gt_lbl, self.step_cnt==0, self.segs, self.inrs [0], self.bdrs [0], self.T, scaler)
# split_reward += split_rew_action (action, self.gt_lbl, self.step_cnt==0, self.segs, self.inrs [0], self.bdrs [0], self.T, scaler)
# split_reward_inr += split_reward_s_onlyInr (self.lbl, self.new_lbl, self.gt_lbl, self.step_cnt==0, self.inrs, self.inrs, self.bdrs, self.T, scaler)
reward += self.config ["spl_w"] * split_reward + self.config ["mer_w"] * merge_reward #+ split_reward * merge_reward`
merge_ratio += ((merge_reward ) / range_merge) * (self.gt_lbl > 0)
split_ratio += ((split_reward ) / range_split) * (self.gt_lbl > 0)
self.split_ratio_sum = self.split_ratio_sum + split_ratio
self.merge_ratio_sum = self.merge_ratio_sum + merge_ratio
self.lbl = self.new_lbl
self.step_cnt += 1
#Reward
self.rewards.append (reward)
self.sum_reward += reward
if self.step_cnt >= min (self.tempT, self.T):
done = True
if self.config ["lowres"]:
reward = self.lowres_reward (reward)
ret = (self.observation (), reward, done, info)
return ret
def unique (self):
return np.unique (self.lbl, return_counts=True)
def random_init_lbl (self):
if (self.T0 == 0):
return
action = self.gt_lbl > 0
self.step (action)
for t in range (1, self.T0):
action = np.zeros_like (self.lbl)
for i in np.unique (self.gt_lbl):
if i == 0:
continue
action += (self.gt_lbl == i) * self.rng.randint (0, 2)
if self.type == "train":
self.step (action)
else:
self.step_inference (action)
def reset_end (self):
"""
Must call after reset
"""
self.w_map = None
# Updating information for new data point
if self.config ["exp_pool"] <= 0 or len (self.pool) < self.pool_capacity or self.pool_iter % self.pool_period == 0:
if self.config ["reward"] == "seg" and (self.type == "train" or self.is3D):
if not self.is3D:
self.gt_lbl = relabel (reorder_label (self.gt_lbl))
# Get all unique id from ground truth
unique_list = np.unique (self.gt_lbl, return_counts=True)
# Remove small segment
self.idx_list = [unique_list [0][i] for i in range (len (unique_list [0])) if unique_list [1][i] > self.config["minsize"]]
# Remove background
if 0 in self.idx_list:
self.idx_list.remove (0)
if self.config ["rew_drop"]:
# Choose number of initial cells for reward calculation
self.keep = self.rng.choice (self.idx_list, min (self.config ["rew_drop"], len (self.idx_list)), replace=False).tolist ()
# From the current keep list, add more neighbor cells to keeps, get boundary and cell body mask
for idx in np.copy (self.keep):
# Dilate for boundary
dilated_seg = budget_binary_dilation (self.gt_lbl==idx, self.config ["out_radius"][0], fac=self.config["dilate_fac"])
# Multiply with boundary mask and get all the unique neighbors id
neighbor_ids = np.unique (dilated_seg * self.gt_lbl).tolist ();
# Remove background
if 0 in neighbor_ids:
neighbor_ids.remove (0)
# Remove its self
if idx in neighbor_ids:
neighbor_ids.remove (idx)
# Add up more neighbor cells to the list of reward calculation
neighbor_ids = self.rng.choice(neighbor_ids, min (self.config ["rew_drop_2"], len (neighbor_ids)), replace=False).tolist ()
# Ignore the added ones
for _idx in neighbor_ids:
if not (_idx in self.keep):
self.keep.append (_idx)
# Get a map of keep list
self.keep_map = np.isin (self.gt_lbl, self.keep)
# Calculate foreground ratio
fg_ratio = np.count_nonzero (self.keep_map) / np.prod (self.keep_map.shape)
# fg_ratio = min (fg_ratio, 0.1)
# Sampling the ratio so that the number of sampled background pixel will be calculated for reward
bg_sampling_map = self.rng.choice ([False,True], self.keep_map.shape, replace=True, p=[1.0-fg_ratio, fg_ratio])
self.keep_map = self.keep_map | (bg_sampling_map & (self.gt_lbl == 0))
self.keep_map = self.keep_map.astype (np.float32)
# Update cells body of reward calculation list [keep]
self.segs = [self.gt_lbl == idx for idx in self.keep]
self.bdrs = []
self.inrs = []
# A neighbor area map from all the cells in the keep list
adj_map = np.zeros (self.gt_lbl.shape, dtype=np.bool)
for radius in self.config ["out_radius"]:
bdrs = []
for seg in self.segs:
# For each cell in the keep list, get its dilated boundary
bdr = seg ^ budget_binary_dilation (seg, radius, fac=self.config["dilate_fac"])
# Update boundary list
bdrs.append (bdr)
# Update the adj map
adj_map = adj_map | bdr | seg
self.bdrs += [bdrs]
# List of neighbor to the cells in the keep list (excluding the cells in the list itself)
adj_list = np.unique (adj_map * self.gt_lbl).tolist ()
self.idx_list = copy.deepcopy (self.keep)
# Update the cells body and boundary of the just listed neighbor cells
for idx in adj_list:
# For each neighbor that is not background, and not in the copy of keep list (will be updated)
if idx != 0 and idx not in self.idx_list:
seg = self.gt_lbl == idx
# Get the bdrs and boundaries
self.segs.append (seg)
for i, radius in enumerate (self.config ["out_radius"]):
self.bdrs [i].append (seg ^ budget_binary_dilation (seg, radius, fac=self.config["dilate_fac"]))
self.idx_list.append (idx)
if not self.is3D:
for radius in self.config ["in_radius"]:
self.inrs += [[budget_binary_erosion (seg, radius, minsize=self.config["minsize"]) for seg in self.segs]]
else:
self.inrs = [[seg for seg in self.segs]]
if self.config ["exp_pool"] > 0:
training_sample = {}
training_sample ["raw"] = self.raw
training_sample ["gt_lbl"] = self.gt_lbl
training_sample ["inrs"] = self.inrs
training_sample ["segs"] = self.segs
training_sample ["bdrs"] = self.bdrs
training_sample ["keep"] = self.keep
training_sample ["keep_map"] = self.keep_map
training_sample ["idx_list"] = self.idx_list
self.pool.append (training_sample)
if len (self.pool) > self.pool_capacity:
self.pool.pop (0)
if self.config ["exp_pool"] > 0:
self.pool_iter += 1
self.random_init_lbl ()
def first_step_reward (self, density=None):
reward = np.zeros (self.size, dtype=np.float32)
st_foregr_ratio = self.config ["st_fgbg_ratio"]
reward += ((self.new_lbl != 0) & (self.gt_lbl != 0)) * (1.0 - st_foregr_ratio)
reward += ((self.new_lbl == 0) & (self.gt_lbl == 0)) * (st_foregr_ratio)
reward -= ((self.new_lbl == 0) & (self.gt_lbl != 0)) * (1.0 - st_foregr_ratio)
reward -= ((self.new_lbl != 0) & (self.gt_lbl == 0)) * (st_foregr_ratio)
return reward
def fgbg_reward (self, scaler=None):
reward = np.zeros (self.size, dtype=np.float32)
foregr_ratio = self.config ["fgbg_ratio"]
# backgr reward, penalty
reward += ((self.new_lbl == 0) & (self.gt_lbl == 0)) * foregr_ratio
reward -= ((self.new_lbl != 0) & (self.gt_lbl == 0)) * foregr_ratio
# foregr reward, penalty
reward += ((self.new_lbl != 0) & (self.gt_lbl != 0)) * (1 - foregr_ratio)
reward -= ((self.new_lbl == 0) & (self.gt_lbl != 0)) * (1 - foregr_ratio)
return reward
def background_reward (self, last_step):
reward = np.zeros (self.size, dtype=np.float32)
foregr_ratio = self.config ["fgbg_ratio"]
if last_step:
reward += ((self.new_lbl == 0) & (self.gt_lbl == 0)) * foregr_ratio
reward -= ((self.new_lbl != 0) & (self.lbl == 0) & (self.gt_lbl == 0)) * foregr_ratio
return reward
def foreground_reward (self, last_step):
reward = np.zeros (self.size, dtype=np.float32)
foregr_ratio = self.config ["fgbg_ratio"]
reward += ((self.new_lbl != 0) & (self.lbl == 0) & (self.gt_lbl != 0)) * (1 - foregr_ratio)
if last_step:
reward -= ((self.new_lbl == 0) & (self.gt_lbl != 0)) * (1 - foregr_ratio)
return reward
def observation (self):
lbl = self.lbl / self.max_lbl * 255.0
done_mask = np.zeros (self.size, dtype=np.float32)
if self.step_cnt >= self.T:
done_mask += 255.0
if self.config ["data_chan"] == 1:
obs = [self.raw [None].astype (np.float32), done_mask [None]]
elif self.config ["data_chan"] == 3:
obs = [np.transpose (self.raw.astype (np.float32), [2, 0, 1]), done_mask [None]]
if self.config ["use_lbl"]:
obs.append (lbl [None])
if self.config ["use_masks"]:
obs.append (self.mask)
obs = np.concatenate (obs, 0)
return obs / 255.0
def render (self):
index = len (self.raw) // 2
if self.is3D:
tmp_raw = self.raw [index]
tmp_lbl = self.lbl [index]
tmp_gt_lbl = self.gt_lbl [index]
else:
tmp_raw = self.raw
tmp_lbl = self.lbl
tmp_gt_lbl = self.gt_lbl
if self.config ["data_chan"] == 1:
raw = np.repeat (np.expand_dims (tmp_raw, -1), 3, -1).astype (np.uint8)
elif self.config ["data_chan"] == 3:
raw = tmp_raw
lbl = tmp_lbl.astype (np.int32)
lbl = self.pred_lbl2rgb (lbl)
gt_lbl = tmp_gt_lbl % 111
gt_lbl += ((gt_lbl == 0) & (tmp_gt_lbl != 0))
gt_lbl = self.gt_lbl2rgb (gt_lbl)
masks = []
for i in range (self.T):
if self.is3D:
mask_i = self.mask [i][index]
else:
mask_i = self.mask [i]
mask_i = np.repeat (np.expand_dims (mask_i, -1), 3, -1).astype (np.uint8)
masks.append (mask_i)
max_reward = 7
rewards = []
for reward_i in [self.sum_reward] + self.rewards:
if self.is3D:
reward_i = reward_i [index]
reward_i = ((reward_i + max_reward) / (2 * max_reward) * 255).astype (np.uint8)
reward_i = np.repeat (np.expand_dims (reward_i, -1), 3, -1)
rewards.append (reward_i)
while (len (rewards) < self.T + 1):
rewards.append (np.zeros_like (rewards [0]))
if self.is3D:
split_ratio_sum = np.repeat (np.expand_dims ((self.split_ratio_sum [index] * 255).astype (np.uint8), -1), 3, -1)
merge_ratio_sum = np.repeat (np.expand_dims ((self.merge_ratio_sum [index] * 255).astype (np.uint8), -1), 3, -1)
else:
split_ratio_sum = np.repeat (np.expand_dims ((self.split_ratio_sum * 255).astype (np.uint8), -1), 3, -1)
merge_ratio_sum = np.repeat (np.expand_dims ((self.merge_ratio_sum * 255).astype (np.uint8), -1), 3, -1)
line1 = [raw, lbl, gt_lbl,] + masks
while (len (rewards) < len (line1)):
rewards = [np.zeros_like (rewards [-1])] + rewards
rewards[0] = split_ratio_sum
rewards[1] = merge_ratio_sum
line1 = np.concatenate (line1, 1)
line2 = np.concatenate (rewards, 1)
ret = np.concatenate ([line1, line2], 0)
return ret
class EM_env (General_env):
def __init__ (self, raw_list, config, type, gt_lbl_list=None, obs_format="CHW", seed=0):
self.type = type
self.raw_list = raw_list
self.gt_lbl_list = gt_lbl_list
self.rng = np.random.RandomState(seed)
self.config = config
self.obs_format = obs_format
self.init (config)
def random_crop (self, size, imgs):
y0 = self.rng.randint (imgs[0].shape[0] - size[0] + 1)
x0 = self.rng.randint (imgs[0].shape[1] - size[1] + 1)
ret = []
if self.is3D:
z0 = self.rng.randint (imgs[0].shape[0] - size[0] + 1)
y0 = self.rng.randint (imgs[0].shape[1] - size[1] + 1)
x0 = self.rng.randint (imgs[0].shape[2] - size[2] + 1)
for img in imgs:
ret += [img[z0:z0+size[0], y0:y0+size[1], x0:x0+size[2]]]
else:
for img in imgs:
ret += [img[y0:y0+size[0], x0:x0+size[1]]]
return ret
def reset (self, model=None, gpu_id=0):
self.T0 = self.config ["T0"]
self.step_cnt = 0
idx = self.rng.randint (0, len (self.raw_list))
self.raw = np.copy (np.array (self.raw_list [idx], copy=True))
if (self.gt_lbl_list is not None):
self.gt_lbl = np.copy(self.gt_lbl_list [idx])
else:
self.gt_lbl = np.zeros_like (self.raw)
columns = 2
rows = 2
# Sampling new data point when not using pool, pool is not full or it is pool update period
if self.config ["exp_pool"] <= 0 or len (self.pool) < self.pool_capacity or self.pool_iter % self.pool_period == 0:
self.raw, self.gt_lbl = self.aug (self.raw, self.gt_lbl)
self.raw, self.gt_lbl = self.random_crop (self.size, [self.raw, self.gt_lbl])
else:
# Get data point from pool, pool_iter will be updated in reset_end
training_sample = self.pool [self.rng.randint (0, len (self.pool))]
self.raw = training_sample ["raw"]
self.gt_lbl = training_sample ["gt_lbl"]
self.inrs = training_sample ["inrs"]
self.segs = training_sample ["segs"]
self.bdrs = training_sample ["bdrs"]
self.keep = training_sample ["keep"]
self.keep_map = training_sample ["keep_map"]
self.idx_list = training_sample ["idx_list"]
self.split_ratio_sum = (np.zeros (self.size, dtype=np.float32) + 0.5) * (self.gt_lbl > 0)
self.merge_ratio_sum = (np.zeros (self.size, dtype=np.float32) + 0.5) * (self.gt_lbl > 0)
self.mask = np.zeros ([self.T] + self.size, dtype=np.float32)
self.lbl = np.zeros (self.size, dtype=np.int32)
self.sum_reward = np.zeros (self.size, dtype=np.float32)
self.rewards = []
self.reset_end ()
return self.observation ()
def set_sample (self, idx, resize=False):
self.step_cnt = 0
self.T0 = self.config ["T0"]
idx = idx
if not self.is3D:
while (self.raw_list [idx].shape [0] < self.size [0] \
or self.raw_list [idx].shape [1] < self.size [1]):
idx = self.rng.randint (len (self.raw_list))
else:
while (self.raw_list [idx].shape [0] < self.size [0] \
or self.raw_list [idx].shape [1] < self.size [1] \
or self.raw_list [idx].shape [2] < self.size [2]):
idx = self.rng.randint (len (self.raw_list))
self.raw = np.array (self.raw_list [idx], copy=True)
if self.gt_lbl_list is not None:
self.gt_lbl = np.array (self.gt_lbl_list [idx], copy=True)
else:
self.gt_lbl = np.zeros (self.size, dtype=np.int32)
if (not resize):
if self.gt_lbl_list is not None:
self.raw, self.gt_lbl = self.random_crop (self.size, [self.raw, self.gt_lbl])
else:
self.raw = self.random_crop (self.size, [self.raw]) [0]
else:
self.raw = cv2.resize (self.raw, (self.size [1], self.size[0]), interpolation=cv2.INTER_NEAREST)
self.gt_lbl = cv2.resize (self.gt_lbl.astype (np.int32), (self.size [1], self.size [0]), interpolation=cv2.INTER_NEAREST)
self.split_ratio_sum = (np.zeros (self.size, dtype=np.float32) + 0.5) * (self.gt_lbl > 0)
self.merge_ratio_sum = (np.zeros (self.size, dtype=np.float32) + 0.5) * (self.gt_lbl > 0)
self.mask = np.zeros ([self.T] + self.size, dtype=np.float32)
self.lbl = np.zeros (self.size, dtype=np.int32)
self.sum_reward = np.zeros (self.size, dtype=np.float32)
self.rewards = []
self.reset_end ()
return self.observation ()